These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25367398)

  • 21. Nonphotosynthetic Biological CO
    Gonzales JN; Matson MM; Atsumi S
    Biochemistry; 2019 Mar; 58(11):1470-1477. PubMed ID: 30395445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?
    Fuchs G
    Annu Rev Microbiol; 2011; 65():631-58. PubMed ID: 21740227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon Fixation Driven by Molecular Hydrogen Results in Chemolithoautotrophically Enhanced Growth of Helicobacter pylori.
    Kuhns LG; Benoit SL; Bayyareddy K; Johnson D; Orlando R; Evans AL; Waldrop GL; Maier RJ
    J Bacteriol; 2016 May; 198(9):1423-8. PubMed ID: 26929299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.
    Rossi F; Olguín EJ; Diels L; De Philippis R
    N Biotechnol; 2015 Jan; 32(1):109-20. PubMed ID: 24355428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation.
    Boyle NR; Morgan JA
    Metab Eng; 2011 Mar; 13(2):150-8. PubMed ID: 21276868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.
    Tamazawa S; Yamamoto K; Takasaki K; Mitani Y; Hanada S; Kamagata Y; Tamaki H
    Microbes Environ; 2016 Jun; 31(2):194-8. PubMed ID: 27297893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key internal factors leading to the variability in CO
    Wang YN; Kai Y; Wang L; Tsang YF; Fu X; Hu J; Xie Y
    J Environ Manage; 2020 Oct; 271():110957. PubMed ID: 32579519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.
    Hügler M; Sievert SM
    Ann Rev Mar Sci; 2011; 3():261-89. PubMed ID: 21329206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source.
    Jourdin L; Freguia S; Donose BC; Keller J
    Bioelectrochemistry; 2015 Apr; 102():56-63. PubMed ID: 25497168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficiency of CO2 fixation by microalgae in a closed raceway pond.
    Li S; Luo S; Guo R
    Bioresour Technol; 2013 May; 136():267-72. PubMed ID: 23567690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the Interplay between Photosynthesis, CO
    Alsiyabi A; Immethun CM; Saha R
    Sci Rep; 2019 Sep; 9(1):12638. PubMed ID: 31477760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z; Pisciotta JM; Tokash JC; Logan BE
    J Biotechnol; 2013 Dec; 168(4):478-85. PubMed ID: 24126154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer modeling of electron and proton transport in chloroplasts.
    Tikhonov AN; Vershubskii AV
    Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Li H; Chen J; Yu L; Fan G; Li T; Li L; Yuan H; Wang J; Wang C; Li D; Lin S
    Microbiol Spectr; 2024 Mar; 12(3):e0217723. PubMed ID: 38319114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 Sep; 144():321-7. PubMed ID: 23891832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO₂ and O₂ respiration kinetics in hydrocarbon contaminated soils amended with organic carbon sources used to determine catabolic diversity.
    Pietravalle S; Aspray TJ
    Environ Pollut; 2013 May; 176():42-7. PubMed ID: 23410675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcinated MIL-100(Fe) as a CO
    Cheng J; Zhu Y; Li K; Lu H; Shi Z
    Sci Total Environ; 2020 Jan; 699():134375. PubMed ID: 31677465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode.
    Wang Z; Leary DH; Malanoski AP; Li RW; Hervey WJ; Eddie BJ; Tender GS; Yanosky SG; Vora GJ; Tender LM; Lin B; Strycharz-Glaven SM
    Appl Environ Microbiol; 2015 Jan; 81(2):699-712. PubMed ID: 25398855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Physicochemical analysis of formation and self-organization of the components of the archaic cycle of CO2 fixation in hydrothermal systems].
    Makarushev SA; Belonogova OV
    Biofizika; 2009; 54(4):748-59. PubMed ID: 19795799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
    Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J
    Water Res; 2014 May; 54():137-48. PubMed ID: 24565804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.