BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25367508)

  • 1. The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.
    Ramos AR; Grein F; Oliveira GP; Venceslau SS; Keller KL; Wall JD; Pereira IA
    Environ Microbiol; 2015 Jul; 17(7):2288-305. PubMed ID: 25367508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DsrC is involved in fermentative growth and interacts directly with the FlxABCD-HdrABC complex in Desulfovibrio vulgaris Hildenborough.
    Ferreira D; Venceslau SS; Bernardino R; Preto A; Zhang L; Waldbauer JR; Leavitt WD; Pereira IAC
    Environ Microbiol; 2023 May; 25(5):962-976. PubMed ID: 36602077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the deletion of qmoABC and the promoter-distal gene encoding a hypothetical protein on sulfate reduction in Desulfovibrio vulgaris Hildenborough.
    Zane GM; Yen HC; Wall JD
    Appl Environ Microbiol; 2010 Aug; 76(16):5500-9. PubMed ID: 20581180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD
    Buckel W; Thauer RK
    Front Microbiol; 2018; 9():401. PubMed ID: 29593673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system.
    Lumppio HL; Shenvi NV; Summers AO; Voordouw G; Kurtz DM
    J Bacteriol; 2001 Jan; 183(1):101-8. PubMed ID: 11114906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteome analysis of propionate degradation by Syntrophobacter fumaroxidans in pure culture and in coculture with methanogens.
    Sedano-Núñez VT; Boeren S; Stams AJM; Plugge CM
    Environ Microbiol; 2018 May; 20(5):1842-1856. PubMed ID: 29611893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TCA cycle tailoring facilitates optimal growth of proton-pumping NADH dehydrogenase-dependent
    Goel N; Srivastav S; Patel A; Shirsath A; Panda TR; Patra M; Feist AM; Anand A
    Microbiol Spectr; 2023 Dec; 11(6):e0222523. PubMed ID: 37855642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella.
    Zhang B; Lingga C; De Groot H; Hackmann TJ
    Sci Rep; 2023 Sep; 13(1):16429. PubMed ID: 37777597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cofactor engineering in Thermoanaerobacterium aotearoense SCUT27 for maximizing ethanol yield and revealing an enzyme complex with high ferredoxin-NAD
    Dai K; Qu C; Li X; Lan Y; Fu H; Wang J
    Bioresour Technol; 2024 Jun; 402():130784. PubMed ID: 38701976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining metabolic flux analysis with proteomics to shed light on the metabolic flexibility: the case of
    Marbehan X; Roger M; Fournier F; Infossi P; Guedon E; Delecourt L; Lebrun R; Giudici-Orticoni MT; Delaunay S
    Front Microbiol; 2024; 15():1336360. PubMed ID: 38463485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites.
    Sander K; Chung D; Hyatt D; Westpheling J; Klingeman DM; Rodriguez M; Engle NL; Tschaplinski TJ; Davison BH; Brown SD
    Microbiologyopen; 2019 Feb; 8(2):e00639. PubMed ID: 29797457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erosion of functional independence early in the evolution of a microbial mutualism.
    Hillesland KL; Lim S; Flowers JJ; Turkarslan S; Pinel N; Zane GM; Elliott N; Qin Y; Wu L; Baliga NS; Zhou J; Wall JD; Stahl DA
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14822-7. PubMed ID: 25267659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Mode of Molybdate Inhibition of
    Zane GM; Wall JD; De León KB
    Front Microbiol; 2020; 11():610455. PubMed ID: 33391236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale genetic characterization of the model sulfate-reducing bacterium,
    Trotter VV; Shatsky M; Price MN; Juba TR; Zane GM; De León KB; Majumder EL; Gui Q; Ali R; Wetmore KM; Kuehl JV; Arkin AP; Wall JD; Deutschbauer AM; Chandonia JM; Butland GP
    Front Microbiol; 2023; 14():1095191. PubMed ID: 37065130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20.
    Price MN; Ray J; Wetmore KM; Kuehl JV; Bauer S; Deutschbauer AM; Arkin AP
    Front Microbiol; 2014; 5():577. PubMed ID: 25400629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a genome-scale metabolic model of Enterococcus faecalis V583 to assess amino acid uptake and its impact on central metabolism.
    Veith N; Solheim M; van Grinsven KW; Olivier BG; Levering J; Grosseholz R; Hugenholtz J; Holo H; Nes I; Teusink B; Kummer U
    Appl Environ Microbiol; 2015 Mar; 81(5):1622-33. PubMed ID: 25527553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess.
    Nair RR; Silveira CM; Diniz MS; Almeida MG; Moura JJ; Rivas MG
    J Biol Inorg Chem; 2015 Mar; 20(2):311-22. PubMed ID: 25488518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive analysis of craniofacial trauma.
    Hussain K; Wijetunge DB; Grubnic S; Jackson IT
    J Trauma; 1994 Jan; 36(1):34-47. PubMed ID: 8295247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes.
    Rabus R; Venceslau SS; Wöhlbrand L; Voordouw G; Wall JD; Pereira IA
    Adv Microb Physiol; 2015; 66():55-321. PubMed ID: 26210106
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.