These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 25367594)
21. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. Gillner DM; Becker DP; Holz RC J Biol Inorg Chem; 2013 Feb; 18(2):155-163. PubMed ID: 23223968 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of the dapE-Encoded N-Succinyl-L,L-diaminopimelic Acid Desuccinylase from Neisseria meningitidis by L-Captopril. Starus A; Nocek B; Bennett B; Larrabee JA; Shaw DL; Sae-Lee W; Russo MT; Gillner DM; Makowska-Grzyska M; Joachimiak A; Holz RC Biochemistry; 2015 Aug; 54(31):4834-44. PubMed ID: 26186504 [TBL] [Abstract][Full Text] [Related]
23. Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site. Paul A; Mishra S J Biol Inorg Chem; 2021 Aug; 26(5):569-582. PubMed ID: 34241683 [TBL] [Abstract][Full Text] [Related]
25. Selectivity of Inhibition of N-Succinyl-l,l-Diaminopimelic Acid Desuccinylase in Bacteria: The product of dapE-gene Is Not the Target of l-Captopril Antimicrobial Activity. Uda NR; Creus M Bioinorg Chem Appl; 2011; 2011():306465. PubMed ID: 21577314 [TBL] [Abstract][Full Text] [Related]
26. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids. Terrazas-López M; Lobo-Galo N; Aguirre-Reyes LG; Cuen-Andrade JL; de la Rosa LA; Alvarez-Parrilla E; Martínez-Martínez A; Díaz-Sánchez ÁG Biochimie; 2020 Oct; 177():198-212. PubMed ID: 32860896 [TBL] [Abstract][Full Text] [Related]
27. Indoline-6-Sulfonamide Inhibitors of the Bacterial Enzyme DapE. Reidl CT; Heath TK; Darwish I; Torrez RM; Moore M; Gild E; Nocek BP; Starus A; Holz RC; Becker DP Antibiotics (Basel); 2020 Sep; 9(9):. PubMed ID: 32933028 [TBL] [Abstract][Full Text] [Related]
28. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity. Terrazas-López M; González-Segura L; Díaz-Vilchis A; Aguirre-Mendez KA; Lobo-Galo N; Martínez-Martínez A; Díaz-Sánchez ÁG Int J Biol Macromol; 2024 Jun; 270(Pt 2):132281. PubMed ID: 38740150 [TBL] [Abstract][Full Text] [Related]
29. Characterization of Helicobacter pylori dapE and construction of a conditionally lethal dapE mutant. Karita M; Etterbeek ML; Forsyth MH; Tummuru MK; Blaser MJ Infect Immun; 1997 Oct; 65(10):4158-64. PubMed ID: 9317022 [TBL] [Abstract][Full Text] [Related]
30. DapE can function as an aspartyl peptidase in the presence of Mn2+. Broder DH; Miller CG J Bacteriol; 2003 Aug; 185(16):4748-54. PubMed ID: 12896993 [TBL] [Abstract][Full Text] [Related]
31. Biochemical and Structural Analysis of the Bacterial Enzyme Succinyl-Diaminopimelate Desuccinylase (DapE) from Kelley EH; Minasov G; Konczak K; Shuvalova L; Brunzelle JS; Shukla S; Beulke M; Thabthimthong T; Olsen KW; Inniss NL; Satchell KJF; Becker DP ACS Omega; 2024 Jan; 9(3):3905-3915. PubMed ID: 38284080 [TBL] [Abstract][Full Text] [Related]
32. L-Captopril and its derivatives as potential inhibitors of microbial enzyme DapE: A combined approach of drug repurposing and similarity screening. Dutta D; Mishra S J Mol Graph Model; 2018 Sep; 84():82-89. PubMed ID: 29936366 [TBL] [Abstract][Full Text] [Related]
33. Deciphering the role of the two metal-binding sites of DapE enzyme via metal substitution. Paul A; Mishra S Comput Biol Chem; 2023 Apr; 103():107832. PubMed ID: 36805170 [TBL] [Abstract][Full Text] [Related]
34. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
35. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate. Valiña AL; Mazumder-Shivakumar D; Bruice TC Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822 [TBL] [Abstract][Full Text] [Related]
36. Mono-N-acyl-2,6-diaminopimelic acid derivatives: analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity. Hlaváček J; Vítovcová M; Sázelová P; Pícha J; Vaněk V; Buděšínský M; Jiráček J; Gillner DM; Holz RC; Mikšík I; Kašička V Anal Biochem; 2014 Dec; 467():4-13. PubMed ID: 25205653 [TBL] [Abstract][Full Text] [Related]
37. Molecular dynamics and density functional theory studies of substrate binding and catalysis of human brain aspartoacylase. Zhang CH; Gao JY; Chen ZQ; Xue Y J Mol Graph Model; 2010 Jun; 28(8):799-806. PubMed ID: 20227313 [TBL] [Abstract][Full Text] [Related]
38. Efficient Calculation of Enzyme Reaction Free Energy Profiles Using a Hybrid Differential Relaxation Algorithm: Application to Mycobacterial Zinc Hydrolases. Romero JM; Martin M; Ramirez CL; Dumas VG; Marti MA Adv Protein Chem Struct Biol; 2015; 100():33-65. PubMed ID: 26415840 [TBL] [Abstract][Full Text] [Related]
39. Structural and mechanistic insight into substrate binding from the conformational dynamics in apo and substrate-bound DapE enzyme. Dutta D; Mishra S Phys Chem Chem Phys; 2016 Jan; 18(3):1671-80. PubMed ID: 26674000 [TBL] [Abstract][Full Text] [Related]
40. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. Park H; Brothers EN; Merz KM J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]