BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25367667)

  • 1. Intestinal biomechanics simulator for robotic capsule endoscope validation.
    Slawinski PR; Oleynikov D; Terry BS
    J Med Eng Technol; 2015 Jan; 39(1):54-9. PubMed ID: 25367667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal Manometry Force Sensor for Robotic Capsule Endoscopy: An Acute, Multipatient In vivo Animal and Human Study.
    Francisco MM; Terry BS; Schoen JA; Rentschler ME
    IEEE Trans Biomed Eng; 2016 May; 63(5):943-951. PubMed ID: 26394411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.
    Zhou H; Alici G; Than TD; Li W
    Proc Inst Mech Eng H; 2014 Mar; 228(3):280-6. PubMed ID: 24519417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft material adhesion characterization for in vivo locomotion of robotic capsule endoscopes: Experimental and modeling results.
    Kern MD; Ortega Alcaide J; Rentschler ME
    J Mech Behav Biomed Mater; 2014 Nov; 39():257-69. PubMed ID: 25151447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small intestine mucosal adhesivity to in vivo capsule robot materials.
    Terry BS; Passernig AC; Hill ML; Schoen JA; Rentschler ME
    J Mech Behav Biomed Mater; 2012 Nov; 15():24-32. PubMed ID: 23026729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
    Zhang C; Liu H; Tan R; Li H
    Proc Inst Mech Eng H; 2014 Mar; 228(3):287-96. PubMed ID: 24525198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental research on anchoring force in intestine for the motion of capsule robot.
    Chen W; Ke Q; He S; Luo W; Ji XC; Yan G
    J Med Eng Technol; 2013 Jul; 37(5):334-41. PubMed ID: 23795696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and experimental results of a novel sensor for measuring the contact force from myenteric contractions.
    Terry BS; Schoen JA; Rentschler ME
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1971-7. PubMed ID: 22531741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of resistant properties of the small intestine for an active capsule endoscope.
    Wang X; Meng MQ
    Proc Inst Mech Eng H; 2010; 224(1):107-18. PubMed ID: 20225462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues.
    Poon CCY; Leung B; Chan CKW; Lau JYW; Chiu PWY
    Surg Endosc; 2016 Feb; 30(2):772-778. PubMed ID: 26017907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Preliminary Experimental Investigation of a Capsule for Measuring the Small Intestine Contraction Pressure.
    Li P; Kothari V; Terry BS
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2702-8. PubMed ID: 26080374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implemented edge shape of an electrical stimulus capsule.
    Woo SH; Kim TW; Lee JH; Kim PU; Won CH; Cho JH
    Int J Med Robot; 2009 Mar; 5(1):59-65. PubMed ID: 19170130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.
    Le VH; Hernando LR; Lee C; Choi H; Jin Z; Nguyen KT; Go G; Ko SY; Park JO; Park S
    Proc Inst Mech Eng H; 2015 Mar; 229(3):255-63. PubMed ID: 25834001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the critical stroke of an earthworm-like robot for capsule endoscopes.
    Kwon J; Park S; Park J; Kim B
    Proc Inst Mech Eng H; 2007 May; 221(4):397-405. PubMed ID: 17605397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance model of an active capsule endoscope in a peristaltic intestine.
    Huang Y; Liang L; Tang P; Guo Z
    Proc Inst Mech Eng H; 2024 May; 238(5):529-536. PubMed ID: 38519860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine.
    Kim JS; Sung IH; Kim YT; Kim DE; Jang YH
    Proc Inst Mech Eng H; 2007 Nov; 221(8):837-45. PubMed ID: 18161244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopping mechanism for capsule endoscope using electrical stimulus.
    Woo SH; Kim TW; Cho JH
    Med Biol Eng Comput; 2010 Jan; 48(1):97-102. PubMed ID: 19911212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.
    Glass P; Cheung E; Sitti M
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2759-67. PubMed ID: 19126455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head or tail: the orientation of the small bowel capsule endoscope movement in the small bowel.
    Kopylov U; Papageorgiou NP; Nadler M; Eliakim R; Ben-Horin S
    Dig Dis Sci; 2012 Mar; 57(3):694-8. PubMed ID: 21960284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of the size estimation in wireless capsule endoscopy: calibrating the M2A PillCam (with video).
    Graepler F; Wolter M; Vonthein R; Gregor M
    Gastrointest Endosc; 2008 May; 67(6):924-31. PubMed ID: 18355817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.