These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25367894)

  • 1. Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties.
    Liao J; Blok S; van der Molen SJ; Diefenbach S; Holleitner AW; Schönenberger C; Vladyka A; Calame M
    Chem Soc Rev; 2015 Feb; 44(4):999-1014. PubMed ID: 25367894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties.
    Liao J; Blok S; van der Molen SJ; Diefenbach S; Holleitner AW; Schönenberger C; Vladyka A; Calame M
    Chem Soc Rev; 2015 Jan; 44(1):382. PubMed ID: 25431964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Controllable Surface Plasmon Resonance Property by Heights of Ordered Nanoparticle Arrays Fabricated via a Nonlithographic Route.
    Zhan Z; Xu R; Mi Y; Zhao H; Lei Y
    ACS Nano; 2015 Apr; 9(4):4583-90. PubMed ID: 25812724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.
    Liu GQ; Hu Y; Liu ZQ; Chen YH; Cai ZJ; Zhang XN; Huang K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4320-8. PubMed ID: 24452786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission resonances through aperiodic arrays of subwavelength apertures.
    Matsui T; Agrawal A; Nahata A; Vardeny ZV
    Nature; 2007 Mar; 446(7135):517-21. PubMed ID: 17392781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sacrificial polymer thin-film template with tunability to construct high-density Au nanoparticle arrays and their refractive index sensing.
    Yuan W; Lu Z; Wang H; Li CM
    Phys Chem Chem Phys; 2013 Oct; 15(37):15499-507. PubMed ID: 23942980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipolar interaction effects in the magnetic and magnetotransport properties of ordered nanoparticle arrays.
    Kechrakos D; Trohidou KN
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2929-43. PubMed ID: 18681029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-induced electrical conduction in molecular devices.
    Banerjee P; Conklin D; Nanayakkara S; Park TH; Therien MJ; Bonnell DA
    ACS Nano; 2010 Feb; 4(2):1019-25. PubMed ID: 20095631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays.
    Mangold MA; Calame M; Mayor M; Holleitner AW
    J Am Chem Soc; 2011 Aug; 133(31):12185-91. PubMed ID: 21721512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching.
    Sivaraman SK; Santhanam V
    Nanotechnology; 2012 Jun; 23(25):255603. PubMed ID: 22653154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of metal nanoparticle arrays by controlled decomposition of polymer particles.
    Brodoceanu D; Fang C; Voelcker NH; Bauer CT; Wonn A; Kroner E; Arzt E; Kraus T
    Nanotechnology; 2013 Mar; 24(8):085304. PubMed ID: 23385827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays.
    Li J; Gu Y; Gong Q
    Opt Express; 2010 Aug; 18(17):17684-98. PubMed ID: 20721155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordered arrays of gold nanostructures from interfacially assembled Au@PNIPAM hybrid nanoparticles.
    Vogel N; Fernández-López C; Pérez-Juste J; Liz-Marzán LM; Landfester K; Weiss CK
    Langmuir; 2012 Jun; 28(24):8985-93. PubMed ID: 22324858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties.
    Lewandowski W; Wójcik M; Górecka E
    Chemphyschem; 2014 May; 15(7):1283-95. PubMed ID: 24789440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications.
    Shipway AN; Katz E; Willner I
    Chemphyschem; 2000 Aug; 1(1):18-52. PubMed ID: 23696260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection.
    Hammock ML; Sokolov AN; Stoltenberg RM; Naab BD; Bao Z
    ACS Nano; 2012 Apr; 6(4):3100-8. PubMed ID: 22397363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.