These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25368143)

  • 1. Using multielement isotopic analysis to decipher drought impacts and adaptive management in ancient agricultural systems.
    Maxwell TM; Silva LC; Horwath WR
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):E4807-8. PubMed ID: 25368143
    [No Abstract]   [Full Text] [Related]  

  • 2. Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain.
    Riehl S; Pustovoytov KE; Weippert H; Klett S; Hole F
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12348-53. PubMed ID: 25114225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reply to Maxwell et al.: Stable isotopes and their potential for interpreting archaeobotanical remains.
    Riehl S; Pustovoytov KE
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):E4809. PubMed ID: 25368142
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantification of drought during the collapse of the classic Maya civilization.
    Evans NP; Bauska TK; Gázquez-Sánchez F; Brenner M; Curtis JH; Hodell DA
    Science; 2018 Aug; 361(6401):498-501. PubMed ID: 30072537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 2009/2010 Caribbean drought: a case study.
    Peters EJ
    Disasters; 2015 Oct; 39(4):738-61. PubMed ID: 25754334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Societal collapse: Drought and the Maya.
    Aimers J; Hodell D
    Nature; 2011 Nov; 479(7371):44-5. PubMed ID: 22051668
    [No Abstract]   [Full Text] [Related]  

  • 7. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands.
    Douglas PM; Pagani M; Canuto MA; Brenner M; Hodell DA; Eglinton TI; Curtis JH
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5607-12. PubMed ID: 25902508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking of drought and climate indices for agricultural drought monitoring in Argentina.
    Araneda-Cabrera RJ; Bermúdez M; Puertas J
    Sci Total Environ; 2021 Oct; 790():148090. PubMed ID: 34091335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What roles can water-stressed vegetation play in agricultural droughts?
    Liu M; Huang J; Sun AY; Wang K; Chen H
    Sci Total Environ; 2022 Jan; 803():149810. PubMed ID: 34492489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa.
    Watson A; Miller J; Künne A; Kralisch S
    Sci Total Environ; 2022 Mar; 812():152464. PubMed ID: 34942252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global patterns of drought recovery.
    Schwalm CR; Anderegg WRL; Michalak AM; Fisher JB; Biondi F; Koch G; Litvak M; Ogle K; Shaw JD; Wolf A; Huntzinger DN; Schaefer K; Cook R; Wei Y; Fang Y; Hayes D; Huang M; Jain A; Tian H
    Nature; 2017 Aug; 548(7666):202-205. PubMed ID: 28796213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response characteristics of highland barley under freeze-thaw, drought and artemisinin stresses.
    Liu H; Bao G; Dou Z; Liu H; Bai J; Chen Y; Yuan Y; Zhang X; Xi J
    BMC Plant Biol; 2022 Mar; 22(1):126. PubMed ID: 35300590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts.
    Liu Y; Shan F; Yue H; Wang X; Fan Y
    J Environ Manage; 2023 May; 333():117460. PubMed ID: 36758412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forages and Pastures Symposium: assessing drought vulnerability of agricultural production systems in context of the 2012 drought.
    Kellner O; Niyogi D
    J Anim Sci; 2014 Jul; 92(7):2811-22. PubMed ID: 24893998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future.
    Leng G; Hall J
    Sci Total Environ; 2019 Mar; 654():811-821. PubMed ID: 30448671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the effect of spatial-temporal droughts on dominant crop yield changes in Central Malawi.
    Chikabvumbwa SR; Salehnia N; Manzanas R; Abdelbaki C; Zerga A
    Environ Monit Assess; 2022 Jan; 194(2):63. PubMed ID: 34993655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plausible association between drought stress tolerance of barley (Hordeum vulgare L.) and programmed cell death via MC1 and TSN1 genes.
    Shamloo-Dashtpagerdi R; Lindlöf A; Aliakbari M; Pirasteh-Anosheh H
    Physiol Plant; 2020 Sep; 170(1):46-59. PubMed ID: 32246464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.
    Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M
    BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and evaluation of a comprehensive drought index.
    Esfahanian E; Nejadhashemi AP; Abouali M; Adhikari U; Zhang Z; Daneshvar F; Herman MR
    J Environ Manage; 2017 Jan; 185():31-43. PubMed ID: 28029478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of HvLRX, a new dehydration and light responsive gene in Tibetan hulless barley (Hordeum vulgare var. nudum).
    Liang J; Zhang H; Yi L; Tang Y; Long H; Yu M; Deng G
    Genes Genomics; 2021 Dec; 43(12):1445-1461. PubMed ID: 34480266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.