These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25368196)

  • 1. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures.
    Dutta A; DuBois DL; Roberts JA; Shaw WJ
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16286-91. PubMed ID: 25368196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine-containing ligands enhance H₂ oxidation catalyst performance.
    Dutta A; Roberts JA; Shaw WJ
    Angew Chem Int Ed Engl; 2014 Jun; 53(25):6487-91. PubMed ID: 24820824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.
    Shaw WJ; Helm ML; DuBois DL
    Biochim Biophys Acta; 2013; 1827(8-9):1123-39. PubMed ID: 23313415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing conditions for utilization of an H2 oxidation catalyst with outer coordination sphere functionalities.
    Dutta A; Ginovska B; Raugei S; Roberts JA; Shaw WJ
    Dalton Trans; 2016 Jun; 45(24):9786-93. PubMed ID: 26905754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase.
    Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C
    Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst.
    Dutta A; Lense S; Hou J; Engelhard MH; Roberts JA; Shaw WJ
    J Am Chem Soc; 2013 Dec; 135(49):18490-6. PubMed ID: 24206187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts.
    Ho MH; O'Hagan M; Dupuis M; DuBois DL; Bullock RM; Shaw WJ; Raugei S
    Dalton Trans; 2015 Jun; 44(24):10969-79. PubMed ID: 25999141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Proton Delivery through Catalyst Structural Dynamics.
    Cardenas AJ; Ginovska B; Kumar N; Hou J; Raugei S; Helm ML; Appel AM; Bullock RM; O'Hagan M
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13509-13513. PubMed ID: 27677094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere.
    Reback ML; Buchko GW; Kier BL; Ginovska-Pangovska B; Xiong Y; Lense S; Hou J; Roberts JA; Sorensen CM; Raugei S; Squier TC; Shaw WJ
    Chemistry; 2014 Feb; 20(6):1510-4. PubMed ID: 24443316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere.
    Yang JY; Smith SE; Liu T; Dougherty WG; Hoffert WA; Kassel WS; Rakowski DuBois M; DuBois DL; Bullock RM
    J Am Chem Soc; 2013 Jul; 135(26):9700-12. PubMed ID: 23631473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer.
    Reback ML; Ginovska-Pangovska B; Ho MH; Jain A; Squier TC; Raugei S; Roberts JA; Shaw WJ
    Chemistry; 2013 Feb; 19(6):1928-41. PubMed ID: 23233438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake.
    Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M
    Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases.
    Wombwell C; Reisner E
    Dalton Trans; 2014 Mar; 43(11):4483-93. PubMed ID: 24366040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases.
    Wilson AD; Shoemaker RK; Miedaner A; Muckerman JT; DuBois DL; DuBois MR
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6951-6. PubMed ID: 17360385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic H
    Sinha S; Tran GN; Na H; Mirica LM
    Chem Commun (Camb); 2022 Jan; 58(8):1143-1146. PubMed ID: 34981080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences.
    Das R; Neese F; van Gastel M
    Phys Chem Chem Phys; 2016 Sep; 18(35):24681-92. PubMed ID: 27545687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction.
    Gu XL; Li JR; Li QL; Guo Y; Jing XB; Chen ZB; Zhao PH
    J Inorg Biochem; 2021 Jun; 219():111449. PubMed ID: 33798827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.