BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25369235)

  • 1. Effects of bisphenol S on the structures and activities of trypsin and pepsin.
    Wang YQ; Zhang HM
    J Agric Food Chem; 2014 Nov; 62(46):11303-11. PubMed ID: 25369235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation and comparison of the binding between tolvaptan and pepsin and trypsin: Multi-spectroscopic approaches and molecular docking.
    Ma X; He J; Huang Y; Xiao Y; Wang Q; Li H
    J Mol Recognit; 2017 May; 30(5):. PubMed ID: 27943449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on interaction between curcumin and pepsin by spectroscopic and docking methods.
    Ying M; Huang F; Ye H; Xu H; Shen L; Huan T; Huang S; Xie J; Tian S; Hu Z; He Z; Lu J; Zhou K
    Int J Biol Macromol; 2015 Aug; 79():201-8. PubMed ID: 25940524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual influence of piceatannol and bisphenol F on their interaction with pepsin: Insights from spectroscopic, isothermal titration calorimetry and molecular modeling studies.
    Shi Y; Liu M; Yan H; Cai C; Guo Q; Pei W; Zhang R; Wang Z; Han J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():384-395. PubMed ID: 30170174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach.
    Li X; Geng M
    Int J Biol Macromol; 2016 Apr; 85():168-78. PubMed ID: 26740464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of a new bisphenol analogue, bisphenol S to bovine serum albumin and calf thymus DNA.
    Wang YQ; Zhang HM; Cao J; Tang BP
    J Photochem Photobiol B; 2014 Sep; 138():182-90. PubMed ID: 24972352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of binding of C.I. Food Red 9 with pepsin by optical spectroscopic and molecular docking methods.
    Wang YQ; Zhang HM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():822-9. PubMed ID: 26001101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods.
    Li X; Ni T
    J Biol Phys; 2016 Jun; 42(3):415-34. PubMed ID: 27094449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the interaction of β-carotene and astaxanthin with trypsin and pepsin by spectroscopic techniques.
    Li X; Li P
    Luminescence; 2016 May; 31(3):782-92. PubMed ID: 26358735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the binding mechanism of iodine with trypsin and pepsin: A spectroscopic and molecular docking.
    Wang Y; Han Q; Zhang G; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118036. PubMed ID: 31931358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the binding of chlorogenic acid to pepsin by spectral and molecular docking.
    Zeng HJ; Liang HL; You J; Qu LB
    Luminescence; 2014 Nov; 29(7):715-21. PubMed ID: 24339327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin.
    Meti MD; Xu Y; Xie J; Chen Y; Wu Z; Liu J; Han Q; He Z; Hu Z; Xu H
    Mol Biol Rep; 2018 Dec; 45(6):1637-1646. PubMed ID: 30215193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the binding interaction between silybin and pepsin by spectral and molecular docking.
    Zeng HJ; You J; Liang HL; Qi T; Yang R; Qu LB
    Int J Biol Macromol; 2014 Jun; 67():105-11. PubMed ID: 24608028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies.
    Zeng HJ; Yang R; Liang H; Qu LB
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():576-90. PubMed ID: 26162346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the interactions of naringenin and naringin with trypsin and pepsin: Experimental and computational modeling approaches.
    Li X; Liu H; Wu X; Xu R; Ma X; Zhang C; Song Z; Peng Y; Ni T; Xu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Sep; 258():119859. PubMed ID: 33957444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the mechanism of the interaction between acteoside and pepsin using spectroscopic techniques.
    Fang Y; Xu H; Shen L; Huang F; Yibulayin S; Huang S; Tian S; Hu Z; He Z; Li F; Li Y; Zhou K
    Luminescence; 2015 Sep; 30(6):859-66. PubMed ID: 25630561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the impact of common migration substances found in milk packaging on proteases: A multispectral and molecular docking approach.
    Xiong Z; He Y; Guan W; Lv X; Chen J; Ma D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124517. PubMed ID: 38801790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the interactions of lysozyme and trypsin with biphenol A using spectroscopic methods.
    Wang YQ; Chen TT; Zhang HM
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):1130-7. PubMed ID: 20093070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent interaction of oxytetracycline with the enzyme trypsin.
    Chi Z; Liu R; Zhang H
    Biomacromolecules; 2010 Sep; 11(9):2454-9. PubMed ID: 20681619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between azo dye Acid Red 14 and pepsin by multispectral methods and docking studies.
    Zhao L; Guo R; Sun Q; Lan J; Li H
    Luminescence; 2017 Nov; 32(7):1123-1130. PubMed ID: 28378400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.