These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 2536929)

  • 21. Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein.
    Aviram M; Rosenblat M; Etzioni A; Levy R
    Metabolism; 1996 Sep; 45(9):1069-79. PubMed ID: 8781293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.
    Kawamura M; Heinecke JW; Chait A
    J Clin Invest; 1994 Aug; 94(2):771-8. PubMed ID: 8040332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells.
    Heinecke JW; Baker L; Rosen H; Chait A
    J Clin Invest; 1986 Mar; 77(3):757-61. PubMed ID: 3005364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pro-oxidant effects of lipoxygenase-derived peroxides on the copper-initiated oxidation of low-density lipoprotein.
    O'Leary VJ; Darley-Usmar VM; Russell LJ; Stone D
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):631-4. PubMed ID: 1554346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein.
    Lynch SM; Frei B
    J Lipid Res; 1993 Oct; 34(10):1745-53. PubMed ID: 8245725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of medium components on Cu(2+)-dependent oxidation of low-density lipoproteins and its sensitivity to superoxide dismutase.
    Thomas CE
    Biochim Biophys Acta; 1992 Sep; 1128(1):50-7. PubMed ID: 1390878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells.
    Fang X; Weintraub NL; Rios CD; Chappell DA; Zwacka RM; Engelhardt JF; Oberley LW; Yan T; Heistad DD; Spector AA
    Circ Res; 1998 Jun; 82(12):1289-97. PubMed ID: 9648725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium- dependent relaxation.
    Murohara T; Kugiyama K; Ohgushi M; Sugiyama S; Ohta Y; Yasue H
    Am J Physiol; 1994 Dec; 267(6 Pt 2):H2441-9. PubMed ID: 7810742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of low-density lipoprotein by Cu2+ and lipoxygenase: an electron spin resonance study.
    Kalyanaraman B; Antholine WE; Parthasarathy S
    Biochim Biophys Acta; 1990 Sep; 1035(3):286-92. PubMed ID: 2169886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Paradoxical increase in LDL oxidation by endothelial cells from an atherosclerosis-resistant mouse strain.
    Miyoshi T; Matsumoto AH; Shi W
    Atherosclerosis; 2007 Jun; 192(2):259-65. PubMed ID: 16919636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stretch force on vascular smooth muscle cells enhances oxidation of LDL via superoxide production.
    Inoue N; Kawashima S; Hirata KI; Rikitake Y; Takeshita S; Yamochi W; Akita H; Yokoyama M
    Am J Physiol; 1998 Jun; 274(6):H1928-32. PubMed ID: 9841520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of MAK-4 and MAK-5 on endothelial cell and soyabean lipoxygenase-induced LDL oxidation.
    Sharma HM; Hanna AN; Titterington LC; Stephens RE
    Adv Exp Med Biol; 1994; 366():441-3. PubMed ID: 7771286
    [No Abstract]   [Full Text] [Related]  

  • 33. Lipoxygenase treatment render low-density lipoprotein susceptible to Cu2+-catalysed oxidation.
    Lass A; Belkner J; Esterbauer H; Kühn H
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):577-85. PubMed ID: 8670073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation.
    Keaney JF; Xu A; Cunningham D; Jackson T; Frei B; Vita JA
    J Clin Invest; 1995 Jun; 95(6):2520-9. PubMed ID: 7769097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of inhibitors of free radical generating-enzymes on low-density lipoprotein oxidation by macrophages.
    Wilkins GM; Leake DS
    Biochim Biophys Acta; 1994 Feb; 1211(1):69-78. PubMed ID: 7510129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of MβCD on Lipoxygenase-Induced LDL Oxidation.
    Ao M; Chen Y
    Chem Pharm Bull (Tokyo); 2017; 65(2):200-203. PubMed ID: 28154312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation between oxidation of low density lipoproteins and prostacyclin synthesis in cultured smooth muscle cells.
    Ek B; Humble L
    Biochem Pharmacol; 1991 Mar; 41(5):695-9. PubMed ID: 1900157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of monocyte binding to endothelial cells by MM-LDL: role of lipoxygenase metabolites.
    Honda HM; Leitinger N; Frankel M; Goldhaber JI; Natarajan R; Nadler JL; Weiss JN; Berliner JA
    Arterioscler Thromb Vasc Biol; 1999 Mar; 19(3):680-6. PubMed ID: 10073973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation of LDL by nitric oxide and its modification by superoxides in macrophage and cell-free systems.
    Wang JM; Chow SN; Lin JK
    FEBS Lett; 1994 Apr; 342(2):171-5. PubMed ID: 8143872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives.
    Rubbo H; Parthasarathy S; Barnes S; Kirk M; Kalyanaraman B; Freeman BA
    Arch Biochem Biophys; 1995 Dec; 324(1):15-25. PubMed ID: 7503550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.