BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25369326)

  • 1. Full-scale validation of a model of algal productivity.
    Béchet Q; Shilton A; Guieysse B
    Environ Sci Technol; 2014 Dec; 48(23):13826-33. PubMed ID: 25369326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.
    Béchet Q; Chambonnière P; Shilton A; Guizard G; Guieysse B
    Biotechnol Bioeng; 2015 May; 112(5):987-96. PubMed ID: 25502920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany.
    Schreiber C; Behrendt D; Huber G; Pfaff C; Widzgowski J; Ackermann B; Müller A; Zachleder V; Moudříková Š; Mojzeš P; Schurr U; Grobbelaar J; Nedbal L
    Bioresour Technol; 2017 Jun; 234():140-149. PubMed ID: 28319762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of limiting factors on biomass and lipid productivities of axenic Chlorella vulgaris in photobioreactor under chemostat cultivation.
    Cho DH; Ramanan R; Heo J; Shin DS; Oh HM; Kim HS
    Bioresour Technol; 2016 Jul; 211():367-73. PubMed ID: 27030956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors.
    Concas A; Steriti A; Pisu M; Cao G
    Bioresour Technol; 2014 Feb; 153():340-50. PubMed ID: 24389410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors.
    Guo Z; Phooi WBA; Lim ZJ; Tong YW
    Bioresour Technol; 2015 Jun; 186():238-245. PubMed ID: 25817035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.
    Gao X; Kong B; Vigil RD
    Bioresour Technol; 2017 Jan; 224():523-530. PubMed ID: 27839859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R; Schmid-Staiger U; Werner A; Hirth T
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE.
    Helisch H; Keppler J; Detrell G; Belz S; Ewald R; Fasoulas S; Heyer AG
    Life Sci Space Res (Amst); 2020 Feb; 24():91-107. PubMed ID: 31987484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.
    Huesemann MH; Van Wagenen J; Miller T; Chavis A; Hobbs S; Crowe B
    Biotechnol Bioeng; 2013 Jun; 110(6):1583-94. PubMed ID: 23280255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic time scales of mixing, mass transfer and biomass growth in a Taylor vortex algal photobioreactor.
    Gao X; Kong B; Vigil RD
    Bioresour Technol; 2015 Dec; 198():283-91. PubMed ID: 26402871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling.
    Huang Y; Sun Y; Liao Q; Fu Q; Xia A; Zhu X
    Bioresour Technol; 2016 Sep; 216():669-76. PubMed ID: 27289058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.
    Concas A; Malavasi V; Costelli C; Fadda P; Pisu M; Cao G
    Bioresour Technol; 2016 Jul; 211():327-38. PubMed ID: 27030952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Temperature and Other Operational Parameters on Chlorella vulgaris Mass Cultivation in a Simple and Low-Cost Column Photobioreactor.
    Bamba BS; Lozano P; Adjé F; Ouattara A; Vian MA; Tranchant C; Lozano Y
    Appl Biochem Biotechnol; 2015 Sep; 177(2):389-406. PubMed ID: 26189103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of maximum algal productivity in membrane bioreactors with a light-dependent growth model.
    Feng F; Li Y; Latimer B; Zhang C; Nair SS; Hu Z
    Sci Total Environ; 2021 Jan; 753():141922. PubMed ID: 32896732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing Productivity and Reducing Environmental Impacts of Full-Scale Algal Production through Optimization of Open Pond Depth and Hydraulic Retention Time.
    Béchet Q; Shilton A; Guieysse B
    Environ Sci Technol; 2016 Apr; 50(7):4102-10. PubMed ID: 26928398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input.
    Béchet Q; Muñoz R; Shilton A; Guieysse B
    Biotechnol Bioeng; 2013 Jan; 110(1):118-26. PubMed ID: 22767101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mini review: photobioreactors for large scale algal cultivation.
    Gupta PL; Lee SM; Choi HJ
    World J Microbiol Biotechnol; 2015 Sep; 31(9):1409-17. PubMed ID: 26085485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling microalgae cultivation productivities in different geographic locations - estimation method for idealized photobioreactors.
    Franz A; Lehr F; Posten C; Schaub G
    Biotechnol J; 2012 Apr; 7(4):546-57. PubMed ID: 21751385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.
    Feng P; Deng Z; Hu Z; Fan L
    Bioresour Technol; 2011 Nov; 102(22):10577-84. PubMed ID: 21955881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.