These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25369728)

  • 1. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.
    Uba FI; Pullagurla SR; Sirasunthorn N; Wu J; Park S; Chantiwas R; Cho YK; Shin H; Soper SA
    Analyst; 2015 Jan; 140(1):113-26. PubMed ID: 25369728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
    Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA
    J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
    Uba FI; Hu B; Weerakoon-Ratnayake K; Oliver-Calixte N; Soper SA
    Lab Chip; 2015 Feb; 15(4):1038-49. PubMed ID: 25511610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open-tubular nanoelectrochromatography (OT-NEC): gel-free separation of single stranded DNAs (ssDNAs) in thermoplastic nanochannels.
    Amarasekara CA; Athapattu US; Rathnayaka C; Choi J; Park S; Soper SA
    Electrophoresis; 2020 Oct; 41(18-19):1627-1640. PubMed ID: 33460211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow velocity in DNA modified nanochannels.
    Li J; Li D
    J Colloid Interface Sci; 2019 Oct; 553():31-39. PubMed ID: 31181468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying surface charge density of thermoplastic nanofluidic biosensors by multivalent cations within the slip plane of the electric double layer.
    Jia Z; Choi J; Lee S; Soper SA; Park S
    Colloids Surf A Physicochem Eng Asp; 2022 Sep; 648():. PubMed ID: 36685784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp.
    Mikkelsen MB; Letailleur AA; Søndergård E; Barthel E; Teisseire J; Marie R; Kristensen A
    Lab Chip; 2012 Jan; 12(2):262-7. PubMed ID: 22081085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of poly(methyl methacrylate) microfluidic devices for high-resolution separations of single-stranded DNA.
    Llopis SL; Osiri J; Soper SA
    Electrophoresis; 2007 Mar; 28(6):984-93. PubMed ID: 17309052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic flow in nanofluidic channels.
    Haywood DG; Harms ZD; Jacobson SC
    Anal Chem; 2014 Nov; 86(22):11174-80. PubMed ID: 25365680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide.
    Oh YJ; Gamble TC; Leonhardt D; Chung CH; Brueck SR; Ivory CF; Lopez GP; Petsev DN; Han SM
    Lab Chip; 2008 Feb; 8(2):251-8. PubMed ID: 18231663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sculpturing wafer-scale nanofluidic devices for DNA single molecule analysis.
    Esmek FM; Bayat P; Pérez-Willard F; Volkenandt T; Blick RH; Fernandez-Cuesta I
    Nanoscale; 2019 Jul; 11(28):13620-13631. PubMed ID: 31290915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical solutions for viscoelectric effects in electrokinetic nanochannels.
    Ma K; Ramachandran A; Santiago JG
    Electrophoresis; 2024 Apr; 45(7-8):676-686. PubMed ID: 38350722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels.
    Oh YJ; Bottenus D; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1609-17. PubMed ID: 19458870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.