These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25369728)

  • 21. Electrokinetic biomolecule preconcentration using xurography-based micro-nano-micro fluidic devices.
    Yuan X; Renaud L; Audry MC; Kleimann P
    Anal Chem; 2015 Sep; 87(17):8695-701. PubMed ID: 26211837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic size dependent electroosmosis in ion-selective microchannels and nanochannels.
    Bandopadhyay A; Chakraborty S
    Electrophoresis; 2013 Aug; 34(15):2193-8. PubMed ID: 23712911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes.
    Liu J; Wang L; Ouyang W; Wang W; Qin J; Xu Z; Xu S; Ge D; Wang L; Liu C; Wang L
    Biosens Bioelectron; 2015 Oct; 72():288-93. PubMed ID: 26000461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices.
    Shoda K; Tanaka M; Mino K; Kazoe Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32854246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible fabrication and applications of polymer nanochannels and nanoslits.
    Chantiwas R; Park S; Soper SA; Kim BC; Takayama S; Sunkara V; Hwang H; Cho YK
    Chem Soc Rev; 2011 Jul; 40(7):3677-702. PubMed ID: 21442106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules.
    Athapattu US; Rathnayaka C; Vaidyanathan S; Gamage SST; Choi J; Riahipour R; Manoharan A; Hall AR; Park S; Soper SA
    ACS Sens; 2021 Aug; 6(8):3133-3143. PubMed ID: 34406743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy.
    ONeil CE; Jackson JM; Shim SH; Soper SA
    Anal Chem; 2016 Apr; 88(7):3686-96. PubMed ID: 26927303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant-induced electroosmotic flow in microfluidic capillaries.
    Azadi G; Tripathi A
    Electrophoresis; 2012 Jul; 33(14):2094-101. PubMed ID: 22821484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoconfinement effects: glucose oxidase reaction kinetics in nanofluidics.
    Wang C; Sheng ZH; Ouyang J; Xu JJ; Chen HY; Xia XH
    Chemphyschem; 2012 Feb; 13(3):762-8. PubMed ID: 22311832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of electroosmotic flow through nanoporous self-assembled arrays.
    Bell K; Gomes M; Nazemifard N
    Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices.
    Viefhues M; Manchanda S; Chao TC; Anselmetti D; Regtmeier J; Ros A
    Anal Bioanal Chem; 2011 Oct; 401(7):2113-22. PubMed ID: 21847528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices.
    Esmek FM; Erichlandwehr T; Brkovic N; Pranzner NP; Teuber JP; Fernandez-Cuesta I
    Nanotechnology; 2022 Jul; 33(38):. PubMed ID: 35696945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents.
    Brown L; Koerner T; Horton JH; Oleschuk RD
    Lab Chip; 2006 Jan; 6(1):66-73. PubMed ID: 16372071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane).
    Sunkara V; Park DK; Hwang H; Chantiwas R; Soper SA; Cho YK
    Lab Chip; 2011 Mar; 11(5):962-5. PubMed ID: 21152492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new method of UV-patternable hydrophobization of micro- and nanofluidic networks.
    Arayanarakool R; Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2011 Dec; 11(24):4260-6. PubMed ID: 22064947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanofluidic charged-coupled devices for controlled DNA transport and separation.
    Nouri R; Guan W
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroosmotic flow in microchannels with nanostructures.
    Yasui T; Kaji N; Mohamadi MR; Okamoto Y; Tokeshi M; Horiike Y; Baba Y
    ACS Nano; 2011 Oct; 5(10):7775-80. PubMed ID: 21902222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.