BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25369800)

  • 1. Alignment and structural control of nitrogen-doped carbon nanotubes by utilizing precursor concentration effect.
    Deng W; Chen X; Chen X; Liu Z; Zeng Y; Hu A; Xiong Y; Li Z; Tang Q
    Nanotechnology; 2014 Nov; 25(47):475601. PubMed ID: 25369800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of nitrogen-doped carbon nanotubes with different morphologies from melamine-formaldehyde resin.
    Yao Y; Zhang B; Shi J; Yang Q
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7413-20. PubMed ID: 25790324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin.
    Jiang L; Ding Y; Jiang F; Li L; Mo F
    Anal Chim Acta; 2014 Jun; 833():22-8. PubMed ID: 24909770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Doping Effect of the M-Co2P/Nitrogen-Doped Carbon Nanotubes (M = Fe, Ni, Cu) Hydrogen Evolution Hybrid Catalysts.
    Pan Y; Liu Y; Lin Y; Liu C
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13890-901. PubMed ID: 27197546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation.
    Wang X; Xue H; Yang L; Wang H; Zang P; Qin X; Wang Y; Ma Y; Wu Q; Hu Z
    Nanotechnology; 2011 Sep; 22(39):395401. PubMed ID: 21891845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Free Chemoselective Hydrogenation of Nitroarenes by N-Doped Carbon Nanotubes via In Situ Polymerization of Pyrrole.
    Li G; Zheng S; Wang L; Zhang X
    ACS Omega; 2020 Apr; 5(13):7519-7528. PubMed ID: 32280895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen- and boron-doped double-walled carbon nanotubes.
    Panchakarla LS; Govindaraj A; Rao CN
    ACS Nano; 2007 Dec; 1(5):494-500. PubMed ID: 19206671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growth of aligned carbon nanotubes on quartz substrate by spray pyrolysis of hexane.
    Sadeghian Z
    Nanotechnology; 2008 Jun; 19(24):245612. PubMed ID: 21825824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction.
    Vijayaraghavan G; Stevenson KJ
    Langmuir; 2007 May; 23(10):5279-82. PubMed ID: 17428074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells.
    Wang Z; Jia R; Zheng J; Zhao J; Li L; Song J; Zhu Z
    ACS Nano; 2011 Mar; 5(3):1677-84. PubMed ID: 21309566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CN(x)-multi-wall carbon nanotube hybrid materials.
    Simmons TJ; Hashim DP; Zhan X; Bravo-Sanchez M; Hahm MG; López-Luna E; Linhardt RJ; Ajayan PM; Navarro-Contreras H; Vidal MA
    Nanotechnology; 2012 Aug; 23(32):325601. PubMed ID: 22825368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient preparation of nitrogen-doped lignin-based carbon nanotubes and the selectivity of nitrogen speciation for photothermal therapy.
    Peng Y; Guo B; Wang W; Yu P; Wu Z; Shao L; Luo W
    Int J Biol Macromol; 2023 May; 238():124127. PubMed ID: 36958448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene.
    Lara-Romero J; Alonso-Núñez G; Jiménez-Sandoval S; Avalos-Borja M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6509-12. PubMed ID: 19205231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism.
    He M; Zhou S; Zhang J; Liu Z; Robinson C
    J Phys Chem B; 2005 May; 109(19):9275-9. PubMed ID: 16852108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urchin-like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation.
    Guo D; Yuan H; Wang X; Zhu C; Chen Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9628-9636. PubMed ID: 32020801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High reaction activity of nitrogen-doped carbon nanotubes toward the electrooxidation of nitric oxide.
    Xu X; Yang L; Jiang S; Hu Z; Liu S
    Chem Commun (Camb); 2011 Jul; 47(25):7137-9. PubMed ID: 21614368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of NCNTs Growth on Foamed Nickel and Thus-Prepared PS Hydrogenation High-Performance Carrier NCNTs@FN.
    Yan JY; Cao CY; Cao GP; Pan SF; Lv H; Saeed AMM
    Langmuir; 2024 Apr; 40(13):6786-6805. PubMed ID: 38503426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General Growth of Carbon Nanotubes for Cerium Redox Reactions in High-Efficiency Redox Flow Batteries.
    Na Z; Yao R; Yan Q; Sun X; Huang G
    Research (Wash D C); 2019; 2019():3616178. PubMed ID: 31922132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.