These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25369818)

  • 1. Formaldehyde-a key monad of the biomolecular system.
    Noe CR; Freissmuth J; Richter P; Miculka C; Lachmann B; Eppacher S
    Life (Basel); 2013 Aug; 3(3):486-501. PubMed ID: 25369818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in biomolecular engineering.
    Ryu DD; Nam DH
    Biotechnol Prog; 2000; 16(1):2-16. PubMed ID: 10662483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolutionary significance of phase-separated microsystems.
    Fox SW
    Orig Life; 1976 Jan; 7(1):49-68. PubMed ID: 787866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin.
    Arrhenius T; Arrhenius G; Paplawsky W
    Orig Life Evol Biosph; 1994 Feb; 24(1):1-17. PubMed ID: 11536656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-13 nuclear magnetic resonance analysis of formaldehyde free preservatives.
    Das K; Dumais J; Basiaga S; Krzyzanowski GD
    Acta Histochem; 2013 Jun; 115(5):481-6. PubMed ID: 23261251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links.
    Cheng G; Shi Y; Sturla SJ; Jalas JR; McIntee EJ; Villalta PW; Wang M; Hecht SS
    Chem Res Toxicol; 2003 Feb; 16(2):145-52. PubMed ID: 12588185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monad, a WD40 repeat protein, promotes apoptosis induced by TNF-alpha.
    Saeki M; Irie Y; Ni L; Yoshida M; Itsuki Y; Kamisaki Y
    Biochem Biophys Res Commun; 2006 Apr; 342(2):568-72. PubMed ID: 16487927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for chemical and cellular reactivities of the formaldehyde releaser bronopol, independent of formaldehyde release.
    Kireche M; Peiffer JL; Antonios D; Fabre I; Giménez-Arnau E; Pallardy M; Lepoittevin JP; Ourlin JC
    Chem Res Toxicol; 2011 Dec; 24(12):2115-28. PubMed ID: 22034943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microspore development in Annona (Annonaceae): differences between monad and tetrad pollen.
    Lora J; Herrero M; Hormaza JI
    Am J Bot; 2014 Sep; 101(9):1508-18. PubMed ID: 25253711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism of human glutathione-dependent formaldehyde dehydrogenase.
    Sanghani PC; Stone CL; Ray BD; Pindel EV; Hurley TD; Bosron WF
    Biochemistry; 2000 Sep; 39(35):10720-9. PubMed ID: 10978156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding composite regulatory patterns in DNA sequences.
    Eskin E; Pevzner PA
    Bioinformatics; 2002; 18 Suppl 1():S354-63. PubMed ID: 12169566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA.
    Saeki M; Egusa H; Kamano Y; Kakihara Y; Houry WA; Yatani H; Noguchi S; Kamisaki Y
    PLoS One; 2013; 8(7):e67326. PubMed ID: 23844004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analogies and differences in the excited reactions of formaldehyde and D-glucose.
    Trézl L; Hullán L; Szarvas T; Csiba A; Pipek J
    Acta Biol Hung; 1998; 49(2-4):437-47. PubMed ID: 10526990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possible influence of L-histidine on the origin of the first peptides on the primordial Earth.
    Reiner H; Plankensteiner K; Fitz D; Rode BM
    Chem Biodivers; 2006 Jun; 3(6):611-21. PubMed ID: 17193295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory study of the oxidation of methanol to formaldehyde on a hydrated vanadia cluster.
    González-Navarrete P; Gracia L; Calatayud M; Andrés J
    J Comput Chem; 2010 Oct; 31(13):2493-501. PubMed ID: 20652991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin films exhibiting multicolor changes induced by formaldehyde-responsive release of anionic dyes.
    Denda T; Mizutani R; Iijima M; Nakahashi H; Yamamoto H; Kanekiyo Y
    Talanta; 2015 Nov; 144():816-22. PubMed ID: 26452895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.
    Blaut M; Müller V; Fiebig K; Gottschalk G
    J Bacteriol; 1985 Oct; 164(1):95-101. PubMed ID: 3930472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of rat liver microsomes in the metabolism of methylmethacrylate to formaldehyde].
    Kotlovskiĭ IuV; Grishanova AIu; Mishin VM; Bachmanova GI
    Vopr Med Khim; 1988; 34(5):14-7. PubMed ID: 3218130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of prebiotic-type organic molecules on the crystallization of Al and Mg hydroxides.
    Costanzo PM; Laszlo P
    Orig Life Evol Biosph; 1988; 18(4):327-45. PubMed ID: 11536605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Investigation of the Formation of Formaldehyde by Hadean and Noachian Impacts.
    Masuda S; Furukawa Y; Kobayashi T; Sekine T; Kakegawa T
    Astrobiology; 2021 Apr; 21(4):413-420. PubMed ID: 33784199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.