BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25369936)

  • 1. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.
    Brower CS; Rosen CE; Jones RH; Wadas BC; Piatkov KI; Varshavsky A
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4936-45. PubMed ID: 25369936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.
    Wadas B; Piatkov KI; Brower CS; Varshavsky A
    J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms.
    Hu RG; Brower CS; Wang H; Davydov IV; Sheng J; Zhou J; Kwon YT; Varshavsky A
    J Biol Chem; 2006 Oct; 281(43):32559-73. PubMed ID: 16943202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway.
    Kwon YT; Kashina AS; Varshavsky A
    Mol Cell Biol; 1999 Jan; 19(1):182-93. PubMed ID: 9858543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ligand of Ate1 is intrinsically disordered and participates in nucleolar phase separation regulated by Jumonji Domain Containing 6.
    Arva A; Kasu YAT; Duncan J; Alkhatatbeh MA; Brower CS
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational protein arginylation in the normal nervous system and in neurodegeneration.
    Galiano MR; Goitea VE; Hallak ME
    J Neurochem; 2016 Aug; 138(4):506-17. PubMed ID: 27318192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway.
    Liu YJ; Liu C; Chang Z; Wadas B; Brower CS; Song ZH; Xu ZL; Shang YL; Liu WX; Wang LN; Dong W; Varshavsky A; Hu RG; Li W
    J Biol Chem; 2016 Apr; 291(14):7426-38. PubMed ID: 26858254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse Dfa is a repressor of TATA-box promoters and interacts with the Abt1 activator of basal transcription.
    Brower CS; Veiga L; Jones RH; Varshavsky A
    J Biol Chem; 2010 May; 285(22):17218-34. PubMed ID: 20356838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates.
    Kim BH; Kim MK; Oh SJ; Nguyen KT; Kim JH; Varshavsky A; Hwang CS; Song HK
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2209597119. PubMed ID: 35878037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response.
    Kumar A; Birnbaum MD; Patel DM; Morgan WM; Singh J; Barrientos A; Zhang F
    Cell Death Dis; 2016 Sep; 7(9):e2378. PubMed ID: 27685622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target site specificity and in vivo complexity of the mammalian arginylome.
    Wang J; Pejaver VR; Dann GP; Wolf MY; Kellis M; Huang Y; Garcia BA; Radivojac P; Kashina A
    Sci Rep; 2018 Nov; 8(1):16177. PubMed ID: 30385798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA
    Avcilar-Kucukgoze I; Gamper H; Polte C; Ignatova Z; Kraetzner R; Shtutman M; Hou YM; Dong DW; Kashina A
    Cell Chem Biol; 2020 Jul; 27(7):839-849.e4. PubMed ID: 32553119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Analysis of Post-Translational Side-Chain Arginylation Using Pan-Arginylation Antibodies.
    MacTaggart B; Shimogawa M; Lougee M; Tang HY; Petersson EJ; Kashina A
    Mol Cell Proteomics; 2023 Nov; 22(11):100664. PubMed ID: 37832787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo.
    Wang J; Han X; Wong CC; Cheng H; Aslanian A; Xu T; Leavis P; Roder H; Hedstrom L; Yates JR; Kashina A
    Chem Biol; 2014 Mar; 21(3):331-7. PubMed ID: 24529990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preparation of recombinant arginyltransferase 1 (ATE1) for biophysical characterization.
    Cartwright M; Van V; Smith AT
    Methods Enzymol; 2023; 679():235-254. PubMed ID: 36682863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ate1-mediated posttranslational arginylation affects substrate adhesion and cell migration in Dictyostelium discoideum.
    Batsios P; Ishikawa-Ankerhold HC; Roth H; Schleicher M; Wong CCL; Müller-Taubenberger A
    Mol Biol Cell; 2019 Feb; 30(4):453-466. PubMed ID: 30586322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial Expression and Purification of Recombinant Arginyltransferase (ATE1) and Arg-tRNA Synthetase (RRS) for Arginylation Assays.
    Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():67-71. PubMed ID: 26285882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes.
    Lee MJ; Kim DE; Zakrzewska A; Yoo YD; Kim SH; Kim ST; Seo JW; Lee YS; Dorn GW; Oh U; Kim BY; Kwon YT
    J Biol Chem; 2012 Jul; 287(28):24043-52. PubMed ID: 22577142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates.
    Rai R; Kashina A
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10123-8. PubMed ID: 16002466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Arginylation Assay in Microplate Format.
    Saha S; Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():79-82. PubMed ID: 26285884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.