These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25370188)

  • 1. The Role of Mechanical Stimulation in Recovery of Bone Loss-High versus Low Magnitude and Frequency of Force.
    Nagaraja MP; Jo H
    Life (Basel); 2014 Apr; 4(2):117-30. PubMed ID: 25370188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts.
    Patel MJ; Chang KH; Sykes MC; Talish R; Rubin C; Jo H
    J Cell Biochem; 2009 Feb; 106(2):306-16. PubMed ID: 19125415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.
    Torcasio A; Jähn K; Van Guyse M; Spaepen P; Tami AE; Vander Sloten J; Stoddart MJ; van Lenthe GH
    PLoS One; 2014; 9(5):e93527. PubMed ID: 24787094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on current osteoporosis research: with special focus on disuse bone loss.
    Lau RY; Guo X
    J Osteoporos; 2011; 2011():293808. PubMed ID: 21876833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground reaction forces during treadmill running in microgravity.
    De Witt JK; Ploutz-Snyder LL
    J Biomech; 2014 Jul; 47(10):2339-47. PubMed ID: 24835563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foot forces during typical days on the international space station.
    Cavanagh PR; Genc KO; Gopalakrishnan R; Kuklis MM; Maender CC; Rice AJ
    J Biomech; 2010 Aug; 43(11):2182-8. PubMed ID: 20462584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants.
    Birmingham E; Kreipke TC; Dolan EB; Coughlin TR; Owens P; McNamara LM; Niebur GL; McHugh PE
    Ann Biomed Eng; 2015 Apr; 43(4):1036-50. PubMed ID: 25281407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ
    Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective Effects of Controlled Mechanical Loading of Bone in C57BL6/J Mice Subject to Disuse.
    DeLong A; Friedman MA; Tucker SM; Krause AR; Kunselman A; Donahue HJ; Lewis GS
    JBMR Plus; 2020 Mar; 4(3):e10322. PubMed ID: 32161839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of microgravity on bone metabolism in vitro and in vivo.
    Loomer PM
    Crit Rev Oral Biol Med; 2001; 12(3):252-61. PubMed ID: 11497376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis.
    Skerry TM
    Arch Biochem Biophys; 2008 May; 473(2):117-23. PubMed ID: 18334226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of constrained dynamic loading, CKIP‑1 gene knockout and combination stimulations on bone loss caused by mechanical unloading.
    Han B; Wei SP; Zhang XC; Li H; Li Y; Li RX; Li K; Zhang XZ
    Mol Med Rep; 2018 Aug; 18(2):2506-2514. PubMed ID: 29956799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutritional interventions related to bone turnover in European space missions and simulation models.
    Heer M
    Nutrition; 2002 Oct; 18(10):853-6. PubMed ID: 12361778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of microgravity on the skeletal system--a review.
    Droppert PM
    J Br Interplanet Soc; 1990 Jan; 43(1):19-24. PubMed ID: 12856692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on solute transport behaviors in the lacunar-canalicular system using numerical simulation in microgravity.
    Liu HY; Zhao S; Zhang H; Huang SY; Peng WT; Zhang CQ; Wang W
    Comput Biol Med; 2020 Apr; 119():103700. PubMed ID: 32339112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.
    Petersen N; Jaekel P; Rosenberger A; Weber T; Scott J; Castrucci F; Lambrecht G; Ploutz-Snyder L; Damann V; Kozlovskaya I; Mester J
    Extrem Physiol Med; 2016; 5():9. PubMed ID: 27489615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli.
    Rubin C; Xu G; Judex S
    FASEB J; 2001 Oct; 15(12):2225-9. PubMed ID: 11641249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium metabolism in microgravity.
    Heer M; Kamps N; Biener C; Korr C; Boerger A; Zittermann A; Stehle P; Drummer C
    Eur J Med Res; 1999 Sep; 4(9):357-60. PubMed ID: 10477499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic acoustic radiation force retains bone structural and mechanical integrity in a functional disuse osteopenia model.
    Uddin SM; Qin YX
    Bone; 2015 Jun; 75():8-17. PubMed ID: 25661670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration.
    Coughlin TR; Niebur GL
    J Biomech; 2012 Aug; 45(13):2222-9. PubMed ID: 22784651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.