These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25370345)

  • 1. A mechanism for decision rule discrimination by supplementary eye field neurons.
    Ray S; Heinen SJ
    Exp Brain Res; 2015 Feb; 233(2):459-76. PubMed ID: 25370345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting the roles of the supplementary and frontal eye fields in ocular decision making.
    Yang SN; Heinen S
    J Neurophysiol; 2014 Jun; 111(12):2644-55. PubMed ID: 24671543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible interpretation of a decision rule by supplementary eye field neurons.
    Heinen SJ; Hwang H; Yang SN
    J Neurophysiol; 2011 Dec; 106(6):2992-3000. PubMed ID: 21900513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supplementary eye field activity reflects a decision rule governing smooth pursuit but not the decision.
    Yang SN; Hwang H; Ford J; Heinen S
    J Neurophysiol; 2010 May; 103(5):2458-69. PubMed ID: 20164387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An oculomotor decision process revealed by functional magnetic resonance imaging.
    Heinen SJ; Rowland J; Lee BT; Wade AR
    J Neurosci; 2006 Dec; 26(52):13515-22. PubMed ID: 17192434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal Correlates of Serial Decision-Making in the Supplementary Eye Field.
    Abzug ZM; Sommer MA
    J Neurosci; 2018 Aug; 38(33):7280-7292. PubMed ID: 30012690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trajectory interpretation by supplementary eye field neurons during ocular baseball.
    Kim YG; Badler JB; Heinen SJ
    J Neurophysiol; 2005 Aug; 94(2):1385-91. PubMed ID: 15888531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for neural integrators in perceptual decision making.
    Mazurek ME; Roitman JD; Ditterich J; Shadlen MN
    Cereb Cortex; 2003 Nov; 13(11):1257-69. PubMed ID: 14576217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement.
    Hamker FH
    Cereb Cortex; 2005 Apr; 15(4):431-47. PubMed ID: 15749987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplementary Eye Field Encodes Confidence in Decisions Under Risk.
    So N; Stuphorn V
    Cereb Cortex; 2016 Feb; 26(2):764-82. PubMed ID: 25750256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A representation of the hazard rate of elapsed time in macaque area LIP.
    Janssen P; Shadlen MN
    Nat Neurosci; 2005 Feb; 8(2):234-41. PubMed ID: 15657597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural model of the frontal eye fields with reward-based learning.
    Ye W; Liu S; Liu X; Yu Y
    Neural Netw; 2016 Sep; 81():39-51. PubMed ID: 27284696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of supplementary eye field in goal-directed behavior.
    Stuphorn V
    J Physiol Paris; 2015; 109(1-3):118-28. PubMed ID: 25720602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of accumulating evidence for a decision in two parietal areas.
    de Lafuente V; Jazayeri M; Shadlen MN
    J Neurosci; 2015 Mar; 35(10):4306-18. PubMed ID: 25762677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of experience on the representation of object-centered space in the macaque supplementary eye field.
    Moorman DE; Olson CR
    J Neurophysiol; 2007 Mar; 97(3):2159-73. PubMed ID: 17202234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing neural activity related to decision-making through flexible odds ratio curves and their derivatives.
    Roca-Pardiñas J; Cadarso-Suárez C; Pardo-Vazquez JL; Leboran V; Molenberghs G; Faes C; Acuña C
    Stat Med; 2011 Jun; 30(14):1695-711. PubMed ID: 21433050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From memory-based decisions to decision-based movements: a model of interval discrimination followed by action selection.
    Joshi P
    Neural Netw; 2007 Apr; 20(3):298-311. PubMed ID: 17556113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal eye field and caudate neurons make different contributions to reward-biased perceptual decisions.
    Fan Y; Gold JI; Ding L
    Elife; 2020 Nov; 9():. PubMed ID: 33245044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural model of sequential movement planning and control of eye movements: Item-Order-Rank working memory and saccade selection by the supplementary eye fields.
    Silver MR; Grossberg S; Bullock D; Histed MH; Miller EK
    Neural Netw; 2012 Feb; 26():29-58. PubMed ID: 22079270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.