These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25370362)

  • 1. A multiscale approach to the adsorption of core-shell nanoparticles at fluid interfaces.
    Nelson A; Wang D; Koynov K; Isa L
    Soft Matter; 2015 Jan; 11(1):118-29. PubMed ID: 25370362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable in Bulk and Aggregating at the Interface: Comparing Core-Shell Nanoparticles in Suspension and at Fluid Interfaces.
    Vasudevan SA; Rauh A; Barbera L; Karg M; Isa L
    Langmuir; 2018 Jan; 34(3):886-895. PubMed ID: 28753321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of iron oxide-poly(ethylene glycol) core-shell nanoparticles at liquid-liquid interfaces.
    Isa L; Amstad E; Textor M; Reimhult E
    Chimia (Aarau); 2010; 64(3):145-9. PubMed ID: 21140907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle stabilized aqueous foams at different length scales: synergy between silica particles and alkylamines.
    Carl A; Bannuscher A; von Klitzing R
    Langmuir; 2015 Feb; 31(5):1615-22. PubMed ID: 25549277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irreversible adsorption-driven assembly of nanoparticles at fluid interfaces revealed by a dynamic surface tension probe.
    Bizmark N; Ioannidis MA; Henneke DE
    Langmuir; 2014 Jan; 30(3):710-7. PubMed ID: 24397479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle assembly at fluid interfaces: structure and dynamics.
    Lin Y; Böker A; Skaff H; Cookson D; Dinsmore AD; Emrick T; Russell TP
    Langmuir; 2005 Jan; 21(1):191-4. PubMed ID: 15620302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid-fluid interfaces.
    Dugyala VR; Muthukuru JS; Mani E; Basavaraj MG
    Phys Chem Chem Phys; 2016 Feb; 18(7):5499-508. PubMed ID: 26863078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.
    Zell ZA; Isa L; Ilg P; Leal LG; Squires TM
    Langmuir; 2014 Jan; 30(1):110-9. PubMed ID: 24328531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression of hard core-soft shell nanoparticles at liquid-liquid interfaces: influence of the shell thickness.
    Rauh A; Rey M; Barbera L; Zanini M; Karg M; Isa L
    Soft Matter; 2016 Dec; 13(1):158-169. PubMed ID: 27515818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the advantages of hard and soft colloids by the use of core-shell particles as interfacial stabilizers.
    Buchcic C; Tromp RH; Meinders MB; Cohen Stuart MA
    Soft Matter; 2017 Feb; 13(7):1326-1334. PubMed ID: 28074195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly-
    Rey M; Fernandez-Rodriguez MA; Karg M; Isa L; Vogel N
    Acc Chem Res; 2020 Feb; 53(2):414-424. PubMed ID: 31940173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the 3D Conformation of Hard-Core Soft-Shell Particles Adsorbed at a Fluid Interface.
    Vialetto J; Camerin F; Ramakrishna SN; Zaccarelli E; Isa L
    Adv Sci (Weinh); 2023 Oct; 10(28):e2303404. PubMed ID: 37541434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly and rheology of ellipsoidal particles at interfaces.
    Madivala B; Fransaer J; Vermant J
    Langmuir; 2009 Mar; 25(5):2718-28. PubMed ID: 19437693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft repulsive interactions, particle rearrangements and size selection in the self-assembly of nanoparticles at liquid interfaces.
    Schwenke K; Del Gado E
    Faraday Discuss; 2015; 181():261-80. PubMed ID: 25930149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled jamming of particle-laden interfaces using a spinning drop tensiometer.
    Cheng HL; Velankar SS
    Langmuir; 2009 Apr; 25(8):4412-20. PubMed ID: 19275131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle assembly and transport at liquid-liquid interfaces.
    Lin Y; Skaff H; Emrick T; Dinsmore AD; Russell TP
    Science; 2003 Jan; 299(5604):226-9. PubMed ID: 12522244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface-induced disassembly of a self-assembled two-component nanoparticle system.
    Gao Y; Duc le T; Ali A; Liang B; Liang JT; Dhar P
    Langmuir; 2013 Mar; 29(11):3654-61. PubMed ID: 23409958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers.
    Ravera F; Santini E; Loglio G; Ferrari M; Liggieri L
    J Phys Chem B; 2006 Oct; 110(39):19543-51. PubMed ID: 17004817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of poly(lactic-co-glycolic acid) nanoparticles at fluid interfaces.
    Gyulai G; Kiss É
    J Colloid Interface Sci; 2017 Aug; 500():9-19. PubMed ID: 28395164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.