BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 25370498)

  • 21. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol.
    van Rossum HM; Kozak BU; Niemeijer MS; Dykstra JC; Luttik MA; Daran JM; van Maris AJ; Pronk JT
    mBio; 2016 May; 7(3):. PubMed ID: 27143389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 23. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway.
    Kocharin K; Siewers V; Nielsen J
    Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.
    Chen Y; Siewers V; Nielsen J
    PLoS One; 2012; 7(8):e42475. PubMed ID: 22876324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase.
    Chen Y; Zhang Y; Siewers V; Nielsen J
    FEMS Yeast Res; 2015 May; 15(3):. PubMed ID: 25852051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals.
    Lian J; Zhao H
    ACS Synth Biol; 2015 Mar; 4(3):332-41. PubMed ID: 24959659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production.
    Zhang C; Li M; Zhao GR; Lu W
    J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.
    Lv X; Xie W; Lu W; Guo F; Gu J; Yu H; Ye L
    J Biotechnol; 2014 Sep; 186():128-36. PubMed ID: 25016205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis.
    Yu T; Zhou YJ; Huang M; Liu Q; Pereira R; David F; Nielsen J
    Cell; 2018 Sep; 174(6):1549-1558.e14. PubMed ID: 30100189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.
    Kozak BU; van Rossum HM; Benjamin KR; Wu L; Daran JM; Pronk JT; van Maris AJ
    Metab Eng; 2014 Jan; 21():46-59. PubMed ID: 24269999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rewriting yeast central carbon metabolism for industrial isoprenoid production.
    Meadows AL; Hawkins KM; Tsegaye Y; Antipov E; Kim Y; Raetz L; Dahl RH; Tai A; Mahatdejkul-Meadows T; Xu L; Zhao L; Dasika MS; Murarka A; Lenihan J; Eng D; Leng JS; Liu CL; Wenger JW; Jiang H; Chao L; Westfall P; Lai J; Ganesan S; Jackson P; Mans R; Platt D; Reeves CD; Saija PR; Wichmann G; Holmes VF; Benjamin K; Hill PW; Gardner TS; Tsong AE
    Nature; 2016 Sep; 537(7622):694-697. PubMed ID: 27654918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae.
    Lv X; Wang F; Zhou P; Ye L; Xie W; Xu H; Yu H
    Nat Commun; 2016 Sep; 7():12851. PubMed ID: 27650330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions.
    Yuan J; Ching CB
    Metab Eng; 2016 Nov; 38():303-309. PubMed ID: 27471067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals.
    Hu Y; Zhu Z; Nielsen J; Siewers V
    Open Biol; 2019 May; 9(5):190049. PubMed ID: 31088249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae.
    Hou J; Tyo KE; Liu Z; Petranovic D; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):491-510. PubMed ID: 22533807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae.
    Rodriguez S; Denby CM; Van Vu T; Baidoo EE; Wang G; Keasling JD
    Microb Cell Fact; 2016 Mar; 15():48. PubMed ID: 26939608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites.
    Lian J; Zhao H
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):437-51. PubMed ID: 25306882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.