These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 25370522)
61. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Agouridas V; El Mahdi O; Diemer V; Cargoët M; Monbaliu JM; Melnyk O Chem Rev; 2019 Jun; 119(12):7328-7443. PubMed ID: 31050890 [TBL] [Abstract][Full Text] [Related]
62. Thioester deprotection using a biomimetic NCL approach. Villamil V; Saiz C; Mahler G Front Chem; 2022; 10():934376. PubMed ID: 36072700 [TBL] [Abstract][Full Text] [Related]
63. Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation. Zheng JS; Chang HN; Wang FL; Liu L J Am Chem Soc; 2011 Jul; 133(29):11080-3. PubMed ID: 21714552 [TBL] [Abstract][Full Text] [Related]
64. Chemical synthesis of a polypeptide backbone derived from the primary sequence of the cancer protein NY-ESO-1 enabled by kinetically controlled ligation and pseudoprolines. Harris PW; Brimble MA Biopolymers; 2015 Mar; 104(2):116-27. PubMed ID: 25656702 [TBL] [Abstract][Full Text] [Related]
65. Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies. Ficht S; Payne RJ; Guy RT; Wong CH Chemistry; 2008; 14(12):3620-9. PubMed ID: 18278777 [TBL] [Abstract][Full Text] [Related]
66. Native chemical ligation at a base-labile 4-mercaptobutyrate N(α)-auxiliary. Harpaz Z; Loibl S; Seitz O Bioorg Med Chem Lett; 2016 Mar; 26(5):1434-7. PubMed ID: 26838809 [TBL] [Abstract][Full Text] [Related]
67. Acid-catalyzed tandem thiol switch for preparing peptide thioesters from mercaptoethyl esters. Eom KD; Tam JP Org Lett; 2011 May; 13(10):2610-3. PubMed ID: 21517126 [TBL] [Abstract][Full Text] [Related]
68. 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide α-thioesters. Mende F; Seitz O Angew Chem Int Ed Engl; 2011 Feb; 50(6):1232-40. PubMed ID: 21290490 [TBL] [Abstract][Full Text] [Related]
69. Solid phase synthesis of peptide-selenoesters. Ghassemian A; Vila-Farrés X; Alewood PF; Durek T Bioorg Med Chem; 2013 Jun; 21(12):3473-8. PubMed ID: 23608106 [TBL] [Abstract][Full Text] [Related]
70. Efficient Chemical Protein Synthesis using Fmoc-Masked N-Terminal Cysteine in Peptide Thioester Segments. Kar A; Mannuthodikayil J; Singh S; Biswas A; Dubey P; Das A; Mandal K Angew Chem Int Ed Engl; 2020 Aug; 59(35):14796-14801. PubMed ID: 32333711 [TBL] [Abstract][Full Text] [Related]
71. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation. Gui Y; Qiu L; Li Y; Li H; Dong S J Am Chem Soc; 2016 Apr; 138(14):4890-9. PubMed ID: 26982082 [TBL] [Abstract][Full Text] [Related]
72. Total chemical synthesis of proteins without HPLC purification. Loibl SF; Harpaz Z; Zitterbart R; Seitz O Chem Sci; 2016 Nov; 7(11):6753-6759. PubMed ID: 28451120 [TBL] [Abstract][Full Text] [Related]
73. Fmoc-based peptide thioester synthesis with self-purifying effect: heading to native chemical ligation in parallel formats. Thomas F J Pept Sci; 2013 Mar; 19(3):141-7. PubMed ID: 23389927 [TBL] [Abstract][Full Text] [Related]
74. The phenacyl group as an efficient thiol protecting group in a peptide condensation reaction by the thioester method. Katayama H; Hojo H Org Biomol Chem; 2013 Jul; 11(26):4405-13. PubMed ID: 23715434 [TBL] [Abstract][Full Text] [Related]
75. Templated native chemical ligation: peptide chemistry beyond protein synthesis. Vázquez O; Seitz O J Pept Sci; 2014 Feb; 20(2):78-86. PubMed ID: 24395765 [TBL] [Abstract][Full Text] [Related]
76. Preparation of peptide thioesters from naturally occurring sequences using reaction sequence consisting of regioselective S-cyanylation and hydrazinolysis. Miyajima R; Tsuda Y; Inokuma T; Shigenaga A; Imanishi M; Futaki S; Otaka A Biopolymers; 2016 Nov; 106(4):531-46. PubMed ID: 26501985 [TBL] [Abstract][Full Text] [Related]
77. A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-Acylurea approach. Mahto SK; Howard CJ; Shimko JC; Ottesen JJ Chembiochem; 2011 Nov; 12(16):2488-94. PubMed ID: 21910203 [TBL] [Abstract][Full Text] [Related]
78. Access to phosphoproteins and glycoproteins through semi-synthesis, Native Chemical Ligation and N→S acyl transfer. Masania J; Li J; Smerdon SJ; Macmillan D Org Biomol Chem; 2010 Nov; 8(22):5113-9. PubMed ID: 20835458 [TBL] [Abstract][Full Text] [Related]
79. On-resin synthesis of cyclic peptides via tandem N-to-S acyl migration and intramolecular thiol additive-free native chemical ligation. Serra G; Posada L; Hojo H Chem Commun (Camb); 2020 Jan; 56(6):956-959. PubMed ID: 31858094 [TBL] [Abstract][Full Text] [Related]
80. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates. Boll E; Drobecq H; Ollivier N; Blanpain A; Raibaut L; Desmet R; Vicogne J; Melnyk O Nat Protoc; 2015 Feb; 10(2):269-92. PubMed ID: 25591010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]