These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2537062)

  • 1. Dusts causing pneumoconiosis generate .OH and produce hemolysis by acting as Fenton catalysts.
    Kennedy TP; Dodson R; Rao NV; Ky H; Hopkins C; Baser M; Tolley E; Hoidal JR
    Arch Biochem Biophys; 1989 Feb; 269(1):359-64. PubMed ID: 2537062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical generation by coal mine dust: possible implication to coal workers' pneumoconiosis (CWP).
    Dalal NS; Newman J; Pack D; Leonard S; Vallyathan V
    Free Radic Biol Med; 1995 Jan; 18(1):11-20. PubMed ID: 7896164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents.
    Repka T; Hebbel RP
    Blood; 1991 Nov; 78(10):2753-8. PubMed ID: 1668610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide.
    Weitzman SA; Graceffa P
    Arch Biochem Biophys; 1984 Jan; 228(1):373-6. PubMed ID: 6320737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Catalytic properties of dust as criteria of its occupational hazards].
    VelichkovskiÄ­ BT; Fishman BB
    Gig Sanit; 2000; (3):25-8. PubMed ID: 10900791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury.
    Shi H; Zhao B; Xin W
    Biochem Mol Biol Int; 1995 Apr; 35(5):981-94. PubMed ID: 7549941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pulmonary response to fibrous dusts of diverse compositions.
    Gross P; deTreville RT; Cralley LJ; Granquist WT; Pundsack FL
    Am Ind Hyg Assoc J; 1970; 31(2):125-32. PubMed ID: 4316348
    [No Abstract]   [Full Text] [Related]  

  • 9. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation.
    Gutteridge JM; Nagy I; Maidt L; Floyd RA
    Arch Biochem Biophys; 1990 Mar; 277(2):422-8. PubMed ID: 2155582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The in vitro release of hydroxyl radicals from dust containing fluoro-edenite fibers identified in the volcanic rocks of Biancavilla (eastern Sicily)].
    Rapisarda V; Amati M; Coloccini S; Bolognini L; Gobbi L; Duscio D
    Med Lav; 2003; 94(2):200-6. PubMed ID: 12852202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The influence of "rigidity" and structure of fibrous dust on their biological activity].
    Troitskaia NA; VelichkovskiÄ­ BT; Vanchugova NN
    Med Tr Prom Ekol; 2000; (3):9-13. PubMed ID: 10826365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability of mineral dusts and fibres to initiate lipid peroxidation. Part I: parameters which determine this ability.
    Gulumian M
    Redox Rep; 1999; 4(4):141-63. PubMed ID: 10658820
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of pH on yields of hydroxyl radicals produced from superoxide by potential biological iron chelators.
    Baker MS; Gebicki JM
    Arch Biochem Biophys; 1986 May; 246(2):581-8. PubMed ID: 3010865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prooxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxamine.
    Borg DC; Schaich KM
    J Free Radic Biol Med; 1986; 2(4):237-43. PubMed ID: 3034996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electron paramagnetic resonance study of the interactions between the adriamycin semiquinone, hydrogen peroxide, iron-chelators, and radical scavengers.
    Kalyanaraman B; Morehouse KM; Mason RP
    Arch Biochem Biophys; 1991 Apr; 286(1):164-70. PubMed ID: 1654778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea.
    Fox RB
    J Clin Invest; 1984 Oct; 74(4):1456-64. PubMed ID: 6090504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of mineral dust on generation of superoxide radicals and hydrogen peroxide by alveolar macrophages, granulocytes and monocytes].
    Gusev VA; Danilovskaia EV; Vatolkina OE
    Biull Eksp Biol Med; 1990 Oct; 110(10):372-5. PubMed ID: 2177667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.