These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
615 related articles for article (PubMed ID: 25370637)
1. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging. Hu YH; Zhao W Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637 [TBL] [Abstract][Full Text] [Related]
2. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model. Hu YH; Scaduto DA; Zhao W Med Phys; 2017 Jan; 44(1):43-56. PubMed ID: 28044312 [TBL] [Abstract][Full Text] [Related]
3. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging. Scaduto DA; Tousignant O; Zhao W Med Phys; 2017 Aug; 44(8):3965-3977. PubMed ID: 28543761 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional linear system analysis for breast tomosynthesis. Zhao B; Zhao W Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis. Zhao C; Vassiljev N; Konstantinidis AC; Speller RD; Kanicki J Phys Med Biol; 2017 Mar; 62(5):1994-2017. PubMed ID: 28072394 [TBL] [Abstract][Full Text] [Related]
6. Experimental validation of a three-dimensional linear system model for breast tomosynthesis. Zhao B; Zhou J; Hu YH; Mertelmeier T; Ludwig J; Zhao W Med Phys; 2009 Jan; 36(1):240-51. PubMed ID: 19235392 [TBL] [Abstract][Full Text] [Related]
7. Cascaded systems analysis of shift-variant image quality in slit-scanning breast tomosynthesis. Berggren K; Cederström B; Lundqvist M; Fredenberg E Med Phys; 2018 Oct; 45(10):4392-4401. PubMed ID: 30091470 [TBL] [Abstract][Full Text] [Related]
8. Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector. Zhao W; Ji WG; Debrie A; Rowlands JA Med Phys; 2003 Feb; 30(2):254-63. PubMed ID: 12607843 [TBL] [Abstract][Full Text] [Related]
9. Optimization of phosphor-based detector design for oblique x-ray incidence in digital breast tomosynthesis. Acciavatti RJ; Maidment AD Med Phys; 2011 Nov; 38(11):6188. PubMed ID: 22047384 [TBL] [Abstract][Full Text] [Related]
10. The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis. Hu YH; Zhao W Med Phys; 2011 May; 38(5):2455-66. PubMed ID: 21776781 [TBL] [Abstract][Full Text] [Related]
11. Nonstationary model of oblique x-ray incidence in amorphous selenium detectors: II. Transfer functions. Acciavatti RJ; Maidment ADA Med Phys; 2019 Feb; 46(2):505-516. PubMed ID: 30488455 [TBL] [Abstract][Full Text] [Related]
12. Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems. Marshall NW Phys Med Biol; 2009 May; 54(9):2845-61. PubMed ID: 19384004 [TBL] [Abstract][Full Text] [Related]
13. Cascaded systems analysis of a-Se/a-Si and a-InGaZnO TFT passive and active pixel sensors for tomosynthesis. Sengupta A; Zhao C; Konstantinidis A; Kanicki J Phys Med Biol; 2019 Jan; 64(2):025012. PubMed ID: 30523916 [TBL] [Abstract][Full Text] [Related]
14. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis. Zhao C; Kanicki J Med Phys; 2014 Sep; 41(9):091902. PubMed ID: 25186389 [TBL] [Abstract][Full Text] [Related]
15. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array. Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630 [TBL] [Abstract][Full Text] [Related]
16. Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis. Mainprize JG; Bloomquist AK; Kempston MP; Yaffe MJ Med Phys; 2006 Sep; 33(9):3159-64. PubMed ID: 17022208 [TBL] [Abstract][Full Text] [Related]
17. Initial clinical experience with contrast-enhanced digital breast tomosynthesis. Chen SC; Carton AK; Albert M; Conant EF; Schnall MD; Maidment AD Acad Radiol; 2007 Feb; 14(2):229-38. PubMed ID: 17236995 [TBL] [Abstract][Full Text] [Related]
18. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Zhao W; Rowlands JA Med Phys; 1997 Dec; 24(12):1819-33. PubMed ID: 9434965 [TBL] [Abstract][Full Text] [Related]
19. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study. Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514 [TBL] [Abstract][Full Text] [Related]
20. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis. Qian X; Rajaram R; Calderon-Colon X; Yang G; Phan T; Lalush DS; Lu J; Zhou O Med Phys; 2009 Oct; 36(10):4389-99. PubMed ID: 19928069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]