These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25370650)

  • 21. Low-dose 4DCT reconstruction via temporal nonlocal means.
    Tian Z; Jia X; Dong B; Lou Y; Jiang SB
    Med Phys; 2011 Mar; 38(3):1359-65. PubMed ID: 21520846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New algorithm to simulate organ movement and deformation for four-dimensional dose calculation based on a three-dimensional CT and fluoroscopy of the thorax.
    Miyabe Y; Narita Y; Mizowaki T; Matsuo Y; Takayama K; Takahashi K; Kaneko S; Kawada N; Maruhashi A; Hiraoka M
    Med Phys; 2009 Oct; 36(10):4328-39. PubMed ID: 19928063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Super-resolution image reconstruction algorithm based on projection onto convex sets and wavelet fusion].
    Cao Y; Liu X; Wang W; Xing Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):947-52. PubMed ID: 19947465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Four-dimensional image registration for image-guided radiotherapy.
    Schreibmann E; Thorndyke B; Li T; Wang J; Xing L
    Int J Radiat Oncol Biol Phys; 2008 Jun; 71(2):578-86. PubMed ID: 18374499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration.
    Wolthaus JW; Sonke JJ; van Herk M; Damen EM
    Med Phys; 2008 Sep; 35(9):3998-4011. PubMed ID: 18841851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical use of iterative 4D-cone beam computed tomography reconstructions to investigate respiratory tumor motion in lung cancer patients.
    Schmidt ML; Poulsen PR; Toftegaard J; Hoffmann L; Hansen D; Sørensen TS
    Acta Oncol; 2014 Aug; 53(8):1107-13. PubMed ID: 24957556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the cone beam CT for internal target volume localization in lung stereotactic radiotherapy in comparison with 4D MIP images.
    Wang L; Chen X; Lin MH; Xue J; Lin T; Fan J; Jin L; Ma CM
    Med Phys; 2013 Nov; 40(11):111709. PubMed ID: 24320417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A pilot evaluation of a 4-dimensional cone-beam computed tomographic scheme based on simultaneous motion estimation and image reconstruction.
    Dang J; Gu X; Pan T; Wang J
    Int J Radiat Oncol Biol Phys; 2015 Feb; 91(2):410-8. PubMed ID: 25636763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motion-map constrained image reconstruction (MCIR): application to four-dimensional cone-beam computed tomography.
    Park JC; Kim JS; Park SH; Liu Z; Song B; Song WY
    Med Phys; 2013 Dec; 40(12):121710. PubMed ID: 24320496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity study of voxel-based PET image comparison to image registration algorithms.
    Yip S; Chen AB; Aerts HJ; Berbeco R
    Med Phys; 2014 Nov; 41(11):111714. PubMed ID: 25370628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of image guided motion management methods in lung cancer radiotherapy.
    Zhuang L; Yan D; Liang J; Ionascu D; Mangona V; Yang K; Zhou J
    Med Phys; 2014 Mar; 41(3):031911. PubMed ID: 24593729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data.
    Yang Y; Zhong Z; Guo X; Wang J; Anderson J; Solberg T; Mao W
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):e749-56. PubMed ID: 22330989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of respiratory motion variability and tumor size on the accuracy of average intensity projection from four-dimensional computed tomography: an investigation based on dynamic MRI.
    Cai J; Read PW; Sheng K
    Med Phys; 2008 Nov; 35(11):4974-81. PubMed ID: 19070231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].
    Wang B; Fan X; Yang Y; Tian X; Gu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Aug; 32(4):788-94. PubMed ID: 26710449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolution enhancement for lung 4D-CT based on transversal structures by using multiple Gaussian process regression learning.
    Fang S; Hu R; Yuan X; Liu S; Zhang Y
    Phys Med; 2020 Oct; 78():187-194. PubMed ID: 33038644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.
    Ehrhardt J; Werner R; Schmidt-Richberg A; Handels H
    IEEE Trans Med Imaging; 2011 Feb; 30(2):251-65. PubMed ID: 20876013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CT image construction of a totally deflated lung using deformable model extrapolation.
    Naini AS; Pierce G; Lee TY; Patel RV; Samani A
    Med Phys; 2011 Feb; 38(2):872-83. PubMed ID: 21452724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs.
    Vandemeulebroucke J; Rit S; Kybic J; Clarysse P; Sarrut D
    Med Phys; 2011 Jan; 38(1):166-78. PubMed ID: 21361185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm.
    Yi J; Yang X; Chen G; Li YR
    Med Phys; 2015 Oct; 42(10):5616-32. PubMed ID: 26429236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.