These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25370672)

  • 1. A method to estimate the fractional fat volume within a ROI of a breast biopsy for WAXS applications: animal tissue evaluation.
    Tang RY; McDonald N; Laamanen C; LeClair RJ
    Med Phys; 2014 Nov; 41(11):113501. PubMed ID: 25370672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WAXS fat subtraction model to estimate differential linear scattering coefficients of fatless breast tissue: phantom materials evaluation.
    Tang RY; Laamanen C; McDonald N; LeClair RJ
    Med Phys; 2014 May; 41(5):053501. PubMed ID: 24784407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements.
    LeClair RJ; Boileau MM; Wang Y
    Med Phys; 2006 Apr; 33(4):959-67. PubMed ID: 16696472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model predictions for the wide-angle x-ray scatter signals of healthy and malignant breast duct biopsies.
    LeClair RJ; Ferreira A; McDonald N; Laamanen C; Tang RY
    J Med Imaging (Bellingham); 2015 Oct; 2(4):043502. PubMed ID: 26835493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A calibration approach to glandular tissue composition estimation in digital mammography.
    Kaufhold J; Thomas JA; Eberhard JW; Galbo CE; Trotter DE
    Med Phys; 2002 Aug; 29(8):1867-80. PubMed ID: 12201434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2013 Nov; 40(11):111901. PubMed ID: 24320434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT energy weighting in the presence of scatter and limited energy resolution.
    Schmidt TG
    Med Phys; 2010 Mar; 37(3):1056-67. PubMed ID: 20384241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semianalytic model to investigate the potential applications of x-ray scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 1998 Jun; 25(6):1008-20. PubMed ID: 9650191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head scatter off-axis for megavoltage x rays.
    Zhu TC; Bjärngard BE
    Med Phys; 2003 Apr; 30(4):533-43. PubMed ID: 12722805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimum momentum transfer arguments for x-ray forward scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 2002 Dec; 29(12):2881-90. PubMed ID: 12512723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections.
    Kappadath SC; Shaw CC
    Med Phys; 2005 Nov; 32(11):3395-408. PubMed ID: 16372415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue.
    Geraki K; Farquharson MJ; Bradley DA
    Phys Med Biol; 2004 Jan; 49(1):99-110. PubMed ID: 14971775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector.
    Maeda K; Matsumoto M; Taniguchi A
    Med Phys; 2005 Jun; 32(6):1542-7. PubMed ID: 16013712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations.
    Yang K; Li X; Liu B
    Med Phys; 2016 Mar; 43(3):1096-110. PubMed ID: 26936697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray forward-scatter imaging: experimental validation of model.
    Leclair RJ; Johns PC
    Med Phys; 2001 Feb; 28(2):210-9. PubMed ID: 11243346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scatter correction for cone-beam computed tomography using moving blocker strips: a preliminary study.
    Wang J; Mao W; Solberg T
    Med Phys; 2010 Nov; 37(11):5792-800. PubMed ID: 21158291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of compensator and imaging geometry on the distribution of x-ray scatter in CBCT.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2011 Feb; 38(2):897-914. PubMed ID: 21452727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray scattering from human breast tissues and breast-equivalent materials.
    Poletti ME; Gonçalves D; Mazzaro I
    Phys Med Biol; 2002 Jan; 47(1):47-63. PubMed ID: 11814227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-free classification of X-ray scattering signals applied to image segmentation.
    Lutz-Bueno V; Arboleda C; Leu L; Blunt MJ; Busch A; Georgiadis A; Bertier P; Schmatz J; Varga Z; Villanueva-Perez P; Wang Z; Lebugle M; David C; Stampanoni M; Diaz A; Guizar-Sicairos M; Menzel A
    J Appl Crystallogr; 2018 Oct; 51(Pt 5):1378-1386. PubMed ID: 30279640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.