These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2537072)

  • 1. Flanking AT-rich sequences may lower the activation energy of cruciform extrusion in supercoiled DNA.
    Wang Y; Sauerbier W
    Biochem Biophys Res Commun; 1989 Jan; 158(2):423-31. PubMed ID: 2537072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cruciform in the direct repeats of the yeast 2 micron DNA: Selective S1 nuclease cleavage at one of the three homologous palindromes.
    Asakura Y; Kikuchi Y; Yanagida M
    J Biochem; 1985 Jul; 98(1):41-7. PubMed ID: 2995328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms.
    Singleton CK
    J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized chemical hyperreactivity in supercoiled DNA: evidence for base unpairing in sequences that induce low-salt cruciform extrusion.
    Furlong JC; Sullivan KM; Murchie AI; Gough GW; Lilley DM
    Biochemistry; 1989 Mar; 28(5):2009-17. PubMed ID: 2541769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow cruciform transitions in palindromic DNA.
    Gellert M; O'Dea MH; Mizuuchi K
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5545-9. PubMed ID: 6577442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between structure transitions in a torsionally constrained DNA.
    Wang Y; Sauerbier W; Blumenfeld M
    Biochem Biophys Res Commun; 1989 Feb; 158(3):696-704. PubMed ID: 2537633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range structural effects in supercoiled DNA: statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion.
    Schaeffer F; Yeramian E; Lilley DM
    Biopolymers; 1989 Aug; 28(8):1449-73. PubMed ID: 2752100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between superhelical density and cruciform formation in plasmid pVH51.
    Singleton CK; Wells RD
    J Biol Chem; 1982 Jun; 257(11):6292-5. PubMed ID: 6281266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of supercoil and temperature on the recognition of palindromic and non-palindromic regions in phi X174 replicative form DNA by S1 and Bal31.
    Müller UR; Wilson CL
    J Biol Chem; 1987 Mar; 262(8):3730-8. PubMed ID: 3029123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
    Zheng GX; Sinden RR
    J Biol Chem; 1988 Apr; 263(11):5356-61. PubMed ID: 3356690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere.
    Dickie P; Morgan AR; McFadden G
    J Mol Biol; 1987 Aug; 196(3):541-58. PubMed ID: 2824785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long range structural communication between sequences in supercoiled DNA. Sequence dependence of contextual influence on cruciform extrusion mechanism.
    Sullivan KM; Murchie AI; Lilley DM
    J Biol Chem; 1988 Sep; 263(26):13074-82. PubMed ID: 2843507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale opening of A + T rich regions within supercoiled DNA molecules is suppressed by salt.
    Bowater RP; Aboul-ela F; Lilley DM
    Nucleic Acids Res; 1994 Jun; 22(11):2042-50. PubMed ID: 8029010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered DNA conformations detected by mung bean nuclease occur in promoter and terminator regions of supercoiled pBR322 DNA.
    Sheflin LG; Kowalski D
    Nucleic Acids Res; 1985 Sep; 13(17):6137-54. PubMed ID: 2995917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation of cruciform structures in pAO3 plasmid DNA on increasing superhelical density].
    Paniutin IG; Liamichev VI; Liubchenko IuL
    Mol Biol (Mosk); 1983; 17(3):667-77. PubMed ID: 6308419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of cruciform extrusion in supercoiled DNA: use of a synthetic inverted repeat to study conformational populations.
    Lilley DM; Markham AF
    EMBO J; 1983; 2(4):527-33. PubMed ID: 6628359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.