BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 2537107)

  • 1. Macrophage recognition of periodate-treated erythrocytes: involvement of disulfide formation of the erythrocyte membrane proteins.
    Beppu M; Ochiai H; Kikugawa K
    Biochim Biophys Acta; 1989 Feb; 979(1):35-45. PubMed ID: 2537107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of macrophage recognition of SH-oxidized erythrocytes: recognition of glycophorin A on erythrocytes by a macrophage receptor for sialosaccharides.
    Beppu M; Takahashi T; Hayashi T; Kikugawa K
    Biochim Biophys Acta; 1994 Aug; 1223(1):47-56. PubMed ID: 8061053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodate-induced lipid oxidation of erythrocyte membranes.
    Beppu M; Kikugawa K
    Lipids; 1987 May; 22(5):312-7. PubMed ID: 3037233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress of human erythrocytes by iodate and periodate. Reversible formation of aqueous membrane pores due to SH-group oxidation.
    Heller KB; Poser B; Haest CW; Deuticke B
    Biochim Biophys Acta; 1984 Oct; 777(1):107-16. PubMed ID: 6091752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of disulfide bonds between glutathione and membrane SH groups in human erythrocytes.
    Haest CW; Kamp D; Deuticke B
    Biochim Biophys Acta; 1979 Nov; 557(2):363-71. PubMed ID: 497187
    [No Abstract]   [Full Text] [Related]  

  • 6. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity.
    Fischer TM; Haest CW; Stöhr M; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 Jul; 510(2):270-82. PubMed ID: 667045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of sialosaccharide chains of glycophorin on damaged erythrocytes by macrophage scavenger receptors.
    Beppu M; Hayashi T; Hasegawa T; Kikugawa K
    Biochim Biophys Acta; 1995 Jul; 1268(1):9-19. PubMed ID: 7626668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of diamide on protein oxidation and physico-chemical properties of lipids in erythrocyte membranes].
    Kozlova NM; Luk'ianenko LM; Antonovich AN; Kut'ko AG; Zubritskaia GP; Slobozhanina EI
    Biofizika; 2002; 47(3):500-5. PubMed ID: 12068607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage recognition of saccharide chains on the erythrocytes damaged by iron-catalyzed oxidation.
    Beppu M; Takahashi T; Kashiwada M; Masukawa S; Kikugawa K
    Arch Biochem Biophys; 1994 Jul; 312(1):189-97. PubMed ID: 8031127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of factors of favism on the protein and lipid components of rat erythrocyte membrane.
    D'Aquino M; Gaetani S; Spadoni MA
    Biochim Biophys Acta; 1983 Jun; 731(2):161-7. PubMed ID: 6849913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide.
    Deuticke B; Poser B; Lütkemeier P; Haest CW
    Biochim Biophys Acta; 1983 Jun; 731(2):196-210. PubMed ID: 6849917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane thiol-disulfide status in glucose-6-phosphate dehydrogenase deficient red cells. Relationship to cellular glutathione.
    Kosower NS; Zipser Y; Faltin Z
    Biochim Biophys Acta; 1982 Oct; 691(2):345-52. PubMed ID: 7138865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential in vitro and in vivo behavior of mouse ascorbate/Fe3+ and diamide oxidized erythrocytes.
    Lotero LA; Jordán JA; Olmos G; Alvarez FJ; Tejedor MC; Diez JC
    Biosci Rep; 2001 Dec; 21(6):857-71. PubMed ID: 12166832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage recognition of the erythrocytes modified by oxidizing agents.
    Beppu M; Ochiai H; Kikugawa K
    Biochim Biophys Acta; 1987 Sep; 930(2):244-53. PubMed ID: 3620517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. in vivo Ageing of human erythrocytes and cell-surface labeling by metaperiodate and sodium borotritide.
    Gattegno L; Durand G; Feger J; Perret G; Felon M; Cornillot P
    Carbohydr Res; 1983 Jun; 117():255-62. PubMed ID: 6309382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of aldehyde moieties involved in the activation of suppressor cells by sodium periodate.
    Dehoux-Zenou SM; Guenounou M; Zinbi H; Ougen P; Couderc R; Agneray JC
    J Immunol; 1987 Feb; 138(4):1157-63. PubMed ID: 3027171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-linking of erythrocyte membrane proteins by periodate and intramembrane particle distribution.
    Gahmberg CG; Virtanen I; Wartiovaara J
    Biochem J; 1978 Jun; 171(3):683-6. PubMed ID: 208513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodate-induced transformation of human peripheral blood lymphocytes and the resultant oxidation of membrane sialyl, galactosyl and fucosyl residues.
    Banchereau JF; Danois DM; Guenounou M; Durand GM; Agneray JC
    Biochim Biophys Acta; 1981 Nov; 678(1):98-105. PubMed ID: 6272876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness.
    Haest CW; Fischer TM; Plasa G; Deuticke B
    Blood Cells; 1980; 6(3):539-53. PubMed ID: 7397401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lectinlike receptor on murine macrophage cell line cells, Mm1: involvement of sialic acid-binding sites in opsonin-independent phagocytosis for xenogeneic red cells.
    Kyoizumi S; Masuda T
    J Leukoc Biol; 1985 Mar; 37(3):289-304. PubMed ID: 3855439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.