These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 25371205)

  • 1. Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH.
    Badarau A; Rouha H; Malafa S; Logan DT; Håkansson M; Stulik L; Dolezilkova I; Teubenbacher A; Gross K; Maierhofer B; Weber S; Jägerhofer M; Hoffman D; Nagy E
    J Biol Chem; 2015 Jan; 290(1):142-56. PubMed ID: 25371205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Context matters: The importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies.
    Badarau A; Rouha H; Malafa S; Battles MB; Walker L; Nielson N; Dolezilkova I; Teubenbacher A; Banerjee S; Maierhofer B; Weber S; Stulik L; Logan DT; Welin M; Mirkina I; Pleban C; Zauner G; Gross K; Jägerhofer M; Magyarics Z; Nagy E
    MAbs; 2016 Oct; 8(7):1347-1360. PubMed ID: 27467113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Function of the Two-Component Cytotoxins of Staphylococcus aureus - Learnings for Designing Novel Therapeutics.
    Badarau A; Trstenjak N; Nagy E
    Adv Exp Med Biol; 2017; 966():15-35. PubMed ID: 28455832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody.
    Rouha H; Badarau A; Visram ZC; Battles MB; Prinz B; Magyarics Z; Nagy G; Mirkina I; Stulik L; Zerbs M; Jägerhofer M; Maierhofer B; Teubenbacher A; Dolezilkova I; Gross K; Banerjee S; Zauner G; Malafa S; Zmajkovic J; Maier S; Mabry R; Krauland E; Wittrup KD; Gerngross TU; Nagy E
    MAbs; 2015; 7(1):243-54. PubMed ID: 25523282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity.
    Trstenjak N; Milić D; Graewert MA; Rouha H; Svergun D; Djinović-Carugo K; Nagy E; Badarau A
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):317-327. PubMed ID: 31852826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separately or combined, LukG/LukH is functionally unique compared to other staphylococcal bicomponent leukotoxins.
    Yanai M; Rocha MA; Matolek AZ; Chintalacharuvu A; Taira Y; Chintalacharuvu K; Beenhouwer DO
    PLoS One; 2014; 9(2):e89308. PubMed ID: 24586678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins.
    Pédelacq JD; Maveyraud L; Prévost G; Baba-Moussa L; González A; Courcelle E; Shepard W; Monteil H; Samama JP; Mourey L
    Structure; 1999 Mar; 7(3):277-87. PubMed ID: 10368297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective sensitization of human neutrophils to LukGH mediated cytotoxicity by Staphylococcus aureus and IL-8.
    Janesch P; Rouha H; Weber S; Malafa S; Gross K; Maierhofer B; Badarau A; Visram ZC; Stulik L; Nagy E
    J Infect; 2017 May; 74(5):473-483. PubMed ID: 28237625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duffy Antigen Receptor for Chemokines (DARC) Nanodisc-Based Biosensor for Detection of Staphylococcal Bicomponent Pore-Forming Leukocidins.
    Kim SO; Park I; Vernet T; Moreau C; Hong S; Park TH
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):37390-37400. PubMed ID: 39007843
    [No Abstract]   [Full Text] [Related]  

  • 10. alpha-Hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure.
    Gouaux E; Hobaugh M; Song L
    Protein Sci; 1997 Dec; 6(12):2631-5. PubMed ID: 9416613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of the
    Trstenjak N; Stulik L; Rouha H; Zmajkovic J; Zerbs M; Nagy E; Badarau A
    Biochem J; 2019 Jan; 476(2):275-292. PubMed ID: 30559327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular ionic interactions serve as a possible switch for stem release in the staphylococcal bi-component toxin for β-barrel pore assembly.
    Takeda K; Tanaka Y; Abe N; Kaneko J
    Toxicon; 2018 Dec; 155():43-48. PubMed ID: 30312693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface.
    Laventie BJ; Guérin F; Mourey L; Tawk MY; Jover E; Maveyraud L; Prévost G
    PLoS One; 2014; 9(3):e92094. PubMed ID: 24643034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Interaction of the Staphylococcal Toxins Panton-Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors.
    Spaan AN; Schiepers A; de Haas CJ; van Hooijdonk DD; Badiou C; Contamin H; Vandenesch F; Lina G; Gerard NP; Gerard C; van Kessel KP; Henry T; van Strijp JA
    J Immunol; 2015 Aug; 195(3):1034-43. PubMed ID: 26091719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disarming Staphylococcus aureus from destroying human cells by simultaneously neutralizing six cytotoxins with two human monoclonal antibodies.
    Rouha H; Weber S; Janesch P; Maierhofer B; Gross K; Dolezilkova I; Mirkina I; Visram ZC; Malafa S; Stulik L; Badarau A; Nagy E
    Virulence; 2018 Jan; 9(1):231-247. PubMed ID: 29099326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
    Yamashita K; Kawai Y; Tanaka Y; Hirano N; Kaneko J; Tomita N; Ohta M; Kamio Y; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17314-9. PubMed ID: 21969538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antigenic landscapes on
    Kailasan S; Kant R; Noonan-Shueh M; Kanipakala T; Liao G; Shulenin S; Leung DW; Alm RA; Adhikari RP; Amarasinghe GK; Gross ML; Aman MJ
    MAbs; 2022; 14(1):2083467. PubMed ID: 35730685
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition.
    DuMont AL; Yoong P; Liu X; Day CJ; Chumbler NM; James DB; Alonzo F; Bode NJ; Lacy DB; Jennings MP; Torres VJ
    Infect Immun; 2014 Mar; 82(3):1268-76. PubMed ID: 24379286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host-Receptor Post-Translational Modifications Refine Staphylococcal Leukocidin Cytotoxicity.
    Tromp AT; Van Gent M; Jansen JP; Scheepmaker LM; Velthuizen A; De Haas CJC; Van Kessel KPM; Bardoel BW; Boettcher M; McManus MT; Van Strijp JAG; Lebbink RJ; Haas PA; Spaan AN
    Toxins (Basel); 2020 Feb; 12(2):. PubMed ID: 32041354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model.
    Karauzum H; Adhikari RP; Sarwar J; Devi VS; Abaandou L; Haudenschild C; Mahmoudieh M; Boroun AR; Vu H; Nguyen T; Warfield KL; Shulenin S; Aman MJ
    PLoS One; 2013; 8(6):e65384. PubMed ID: 23762356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.