BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25371479)

  • 1. Detecting differential peaks in ChIP-seq signals with ODIN.
    Allhoff M; Seré K; Chauvistré H; Lin Q; Zenke M; Costa IG
    Bioinformatics; 2014 Dec; 30(24):3467-75. PubMed ID: 25371479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential peak calling of ChIP-seq signals with replicates with THOR.
    Allhoff M; Seré K; F Pires J; Zenke M; G Costa I
    Nucleic Acids Res; 2016 Nov; 44(20):e153. PubMed ID: 27484474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sierra platinum: a fast and robust peak-caller for replicated ChIP-seq experiments with visual quality-control and -steering.
    Müller L; Gerighausen D; Farman M; Zeckzer D
    BMC Bioinformatics; 2016 Sep; 17(1):377. PubMed ID: 27634469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling ChIP-seq Data Using HMMs.
    Vinciotti V
    Methods Mol Biol; 2017; 1552():115-122. PubMed ID: 28224494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Peak Caller: Calling ChIP-seq peaks on graph-based reference genomes.
    Grytten I; Rand KD; Nederbragt AJ; Storvik GO; Glad IK; Sandve GK
    PLoS Comput Biol; 2019 Feb; 15(2):e1006731. PubMed ID: 30779737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
    Chen L; Wang C; Qin ZS; Wu H
    Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis.
    Ho JW; Bishop E; Karchenko PV; Nègre N; White KP; Park PJ
    BMC Genomics; 2011 Feb; 12():134. PubMed ID: 21356108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data.
    Zhang Y; Lin YH; Johnson TD; Rozek LS; Sartor MA
    Bioinformatics; 2014 Sep; 30(18):2568-75. PubMed ID: 24894502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data.
    Xu H; Wei CL; Lin F; Sung WK
    Bioinformatics; 2008 Oct; 24(20):2344-9. PubMed ID: 18667444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators.
    Piechota M; Korostynski M; Ficek J; Tomski A; Przewlocki R
    BMC Bioinformatics; 2016 Feb; 17():85. PubMed ID: 26868127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. histoneHMM: Differential analysis of histone modifications with broad genomic footprints.
    Heinig M; Colomé-Tatché M; Taudt A; Rintisch C; Schafer S; Pravenec M; Hubner N; Vingron M; Johannes F
    BMC Bioinformatics; 2015 Feb; 16():60. PubMed ID: 25884684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MMDiff: quantitative testing for shape changes in ChIP-Seq data sets.
    Schweikert G; Cseke B; Clouaire T; Bird A; Sanguinetti G
    BMC Genomics; 2013 Nov; 14():826. PubMed ID: 24267901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells.
    Liu T
    Methods Mol Biol; 2014; 1150():81-95. PubMed ID: 24743991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is this the right normalization? A diagnostic tool for ChIP-seq normalization.
    Angelini C; Heller R; Volkinshtein R; Yekutieli D
    BMC Bioinformatics; 2015 May; 16():150. PubMed ID: 25957089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting broad domains and narrow peaks in ChIP-seq data with hiddenDomains.
    Starmer J; Magnuson T
    BMC Bioinformatics; 2016 Mar; 17():144. PubMed ID: 27009150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying peaks in *-seq data using shape information.
    Strino F; Lappe M
    BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):206. PubMed ID: 27295177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid innovation in ChIP-seq peak-calling algorithms is outdistancing benchmarking efforts.
    Szalkowski AM; Schmid CD
    Brief Bioinform; 2011 Nov; 12(6):626-33. PubMed ID: 21059603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data.
    Xing H; Mo Y; Liao W; Zhang MQ
    PLoS Comput Biol; 2012; 8(7):e1002613. PubMed ID: 22844240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling.
    Stanton KP; Jin J; Lederman RR; Weissman SM; Kluger Y
    Nucleic Acids Res; 2017 Dec; 45(21):e173. PubMed ID: 28981893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo detection of differentially bound regions for ChIP-seq data using peaks and windows: controlling error rates correctly.
    Lun AT; Smyth GK
    Nucleic Acids Res; 2014 Jun; 42(11):e95. PubMed ID: 24852250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.