These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25371801)

  • 1. Optimization of L-Tryptophan Biosynthesis From L-Serine of Processed Iranian Beet and Cane Molasses and Indole by Induced Escherichia coli ATCC 11303 Cells.
    Sadeghiyan-Rizi T; Fooladi J; Momhed Heravi M; Sadrai S
    Jundishapur J Microbiol; 2014 Jun; 7(6):e10589. PubMed ID: 25371801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary Study on Cost-Effective L-Tryptophan Production from Indole and L-Serine by
    Sadeghiyan-Rizi T; Fooladi J; Sadrai S
    Avicenna J Med Biotechnol; 2016; 8(4):188-192. PubMed ID: 27920887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cane molasses as a source of precursors in the bioproduction of tryptophan by Bacillus subtilis.
    Shasaltaneh MD; Moosavi-Nejad Z; Gharavi S; Fooladi J
    Iran J Microbiol; 2013 Sep; 5(3):285-92. PubMed ID: 24475338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From sugar beet molasses to Lyphan. Integrated quality management from the raw material to the drug.
    Faurie R; Fries G
    Adv Exp Med Biol; 1999; 467():443-52. PubMed ID: 10721087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pretreated beet molasses on benzaldehyde lyase production by recombinant Escherichia coli BL21(DE3)pLySs.
    Calik P; Levent H
    J Appl Microbiol; 2009 Nov; 107(5):1536-41. PubMed ID: 19426259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation.
    He X; Chen K; Li Y; Wang Z; Zhang H; Qian J; Ouyang P
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1615-22. PubMed ID: 25899726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis.
    Erian AM; Gibisch M; Pflügl S
    Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic production of L-tryptophan from DL-serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase.
    Ishiwata K; Fukuhara N; Shimada M; Makiguchi N; Soda K
    Biotechnol Appl Biochem; 1990 Apr; 12(2):141-9. PubMed ID: 2109982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types.
    Nakata H; Tamura M; Shintani T; Gomi K
    J Biosci Bioeng; 2014 Jun; 117(6):715-9. PubMed ID: 24333188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858.
    Atiyeh H; Duvnjak Z
    Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short communication: Characterization of molasses chemical composition.
    Palmonari A; Cavallini D; Sniffen CJ; Fernandes L; Holder P; Fagioli L; Fusaro I; Biagi G; Formigoni A; Mammi L
    J Dairy Sci; 2020 Jul; 103(7):6244-6249. PubMed ID: 32331893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the biosynthesis of L-tryptophan by genetically modified strains of Escherichia coli.
    Skogman GS; Sjöström JE
    J Gen Microbiol; 1984 Dec; 130(12):3091-100. PubMed ID: 6440947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct conversion of untreated cane molasses into butyric acid by engineered Clostridium tyrobutyricum.
    Guo X; Fu H; Feng J; Hu J; Wang J
    Bioresour Technol; 2020 Apr; 301():122764. PubMed ID: 31958691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by
    Ferrer L; Elsaraf M; Mindt M; Wendisch VF
    Biology (Basel); 2022 May; 11(5):. PubMed ID: 35625472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Molasses on Ruminal Volatile Fatty Acid Production and Microbiota Composition In Vitro.
    Palmonari A; Federiconi A; Cavallini D; Sniffen CJ; Mammi L; Turroni S; D'Amico F; Holder P; Formigoni A
    Animals (Basel); 2023 Feb; 13(4):. PubMed ID: 36830515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic mechanism of tryptophan synthase from Escherichia coli. Kinetics of the reaction of indole with the enzyme--L-serine complexes.
    Lane AN; Kirschner K
    Eur J Biochem; 1983 Jan; 129(3):571-82. PubMed ID: 6402362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala.
    Vohra A; Satyanarayana T
    J Appl Microbiol; 2004; 97(3):471-6. PubMed ID: 15281926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pulse feeding of beet molasses on recombinant benzaldehyde lyase production by Escherichia coli BL21(DE3).
    Calik P; Levent H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):65-73. PubMed ID: 19547969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production L-tryptophan by Escherichia coli cells.
    Bang WG; Lang S; Sahm H; Wagner F
    Biotechnol Bioeng; 1983 Apr; 25(4):999-1011. PubMed ID: 18548715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of base ingredient in cooked molasses blocks on intake and digestion of prairie hay by beef steers.
    Greenwood RH; Titgemeyer EC; Drouillard JS
    J Anim Sci; 2000 Jan; 78(1):167-72. PubMed ID: 10682818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.