BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2537197)

  • 1. Metabolites controlling the rate of starch synthesis in the chloroplast of C3 plants.
    Pettersson G; Ryde-Pettersson U
    Eur J Biochem; 1989 Jan; 179(1):169-72. PubMed ID: 2537197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation.
    Kleczkowski LA
    FEBS Lett; 1999 Apr; 448(1):153-6. PubMed ID: 10217430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of metabolite binding to ribulosebisphosphate carboxylase on the activity of the Calvin photosynthesis cycle.
    Pettersson G; Ryde-Pettersson U
    Eur J Biochem; 1988 Nov; 177(2):351-5. PubMed ID: 3142774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reappraisal of the currently prevailing model of starch biosynthesis in photosynthetic tissues: a proposal involving the cytosolic production of ADP-glucose by sucrose synthase and occurrence of cyclic turnover of starch in the chloroplast.
    Baroja-Fernández E; Muñoz FJ; Akazawa T; Pozueta-Romero J
    Plant Cell Physiol; 2001 Dec; 42(12):1311-20. PubMed ID: 11773523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants.
    Thormählen I; Ruber J; von Roepenack-Lahaye E; Ehrlich SM; Massot V; Hümmer C; Tezycka J; Issakidis-Bourguet E; Geigenberger P
    Plant Cell Environ; 2013 Jan; 36(1):16-29. PubMed ID: 22646759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADPglucose pyrophosphorylase: basic science and applications in biotechnology.
    Preiss J
    Biotechnol Annu Rev; 1996; 2():259-79. PubMed ID: 9704099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of the glucosyl donor: ADPglucose pyrophosphorylase.
    Adv Food Nutr Res; 1998; 41():43-74. PubMed ID: 9699262
    [No Abstract]   [Full Text] [Related]  

  • 8. Model studies of the regulation of the Calvin photosynthesis cycle by cytosolic metabolites.
    Pettersson G; Ryde-Pettersson U
    Biomed Biochim Acta; 1990; 49(8-9):723-32. PubMed ID: 2128020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the regulatory significance of inhibitors acting on non-equilibrium enzymes in the Calvin photosynthesis cycle.
    Pettersson G; Ryde-Pettersson U
    Eur J Biochem; 1989 Jun; 182(2):373-7. PubMed ID: 2544426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply.
    Tiessen A; Hendriks JH; Stitt M; Branscheid A; Gibon Y; Farré EM; Geigenberger P
    Plant Cell; 2002 Sep; 14(9):2191-213. PubMed ID: 12215515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADPglucose pyrophosphorylase.
    Sweetlove LJ; Burrell MM; ap Rees T
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):493-8. PubMed ID: 8973558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model of the Calvin photosynthesis cycle.
    Pettersson G; Ryde-Pettersson U
    Eur J Biochem; 1988 Aug; 175(3):661-72. PubMed ID: 3137030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased levels of adenine nucleotides modify the interaction between starch synthesis and respiration when adenine is supplied to discs from growing potato tubers.
    Loef I; Stitt M; Geigenberger P
    Planta; 2001 Apr; 212(5-6):782-91. PubMed ID: 11346952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid-equilibrium model for the control of the Calvin photosynthesis cycle by cytosolic orthophosphate.
    Pettersson G; Ryde-Pettersson U
    Eur J Biochem; 1987 Dec; 169(2):423-9. PubMed ID: 3691500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulation of starch metabolism by inorganic phosphate.
    Steup M; Peavey DG; Gibbs M
    Biochem Biophys Res Commun; 1976 Oct; 72(4):1554-61. PubMed ID: 999688
    [No Abstract]   [Full Text] [Related]  

  • 16. Transgenic plants changed in carbon allocation pattern display a shift in diurnal growth pattern.
    Kehr J; Hustiak F; Walz C; Willmitzer L; Fisahn J
    Plant J; 1998 Nov; 16(4):497-503. PubMed ID: 9881169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemistry, molecular biology and regulation of starch synthesis.
    Preiss J; Sivak MN
    Genet Eng (N Y); 1998; 20():177-223. PubMed ID: 9666561
    [No Abstract]   [Full Text] [Related]  

  • 18. Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants.
    Baroja-Fernández E; Muñoz FJ; Saikusa T; Rodríguez-López M; Akazawa T; Pozueta-Romero J
    Plant Cell Physiol; 2003 May; 44(5):500-9. PubMed ID: 12773636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine diphosphate glucose pyrophosphatase: A plastidial phosphodiesterase that prevents starch biosynthesis.
    Rodriguez-López M; Baroja-Fernández E; Zandueta-Criado A; Pozueta-Romero J
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8705-10. PubMed ID: 10890880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.
    Neuhaus HE; Schulte N
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):945-53. PubMed ID: 8836142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.