These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2537203)

  • 1. On the non-linear Eadie plots of the tRNA kinetics and non-linear Dixon plots of the PPi inhibition kinetics of the aminoacyl-tRNA synthetases. An analysis of the aminoacylation of tRNA in a model reaction.
    Airas RK
    Eur J Biochem; 1989 Jan; 179(1):95-100. PubMed ID: 2537203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrophosphate-caused inhibition of the aminoacylation of tRNA by the leucyl-tRNA synthetase from Neurospora crassa.
    Airas RK; Cramer F
    Eur J Biochem; 1986 Oct; 160(2):291-6. PubMed ID: 3021454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Inhibition by adenosine and 8-aminoadenosine of the amino-acid activation reaction.
    Blanquet S; Fayat G; Poiret M; Waller JP
    Eur J Biochem; 1975 Feb; 51(2):567-71. PubMed ID: 168070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate.
    Jakubowski H
    Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valyl-tRNA synthetase form yellow lupin seeds: hydrolysis of the enzyme-bound noncognate aminoacyl adenylate as a possible mechanism of increasing specificity of the aminoacyl-tRNA synthetase.
    Jakubowski H
    Biochemistry; 1980 Oct; 19(22):5071-8. PubMed ID: 6257275
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the mechanism of deacylation of aminoacyl-tRNAs by aminoacyl-tRNA synthetases in the absence of adenosine monophosphate and pyrophosphate.
    Bonnet J
    Biochimie; 1974; 56(4):541-5. PubMed ID: 4371101
    [No Abstract]   [Full Text] [Related]  

  • 8. Analysis of the isoleucyl-tRNA synthetase reaction by total rate equations. Magnesium and spermidine in the tRNA kinetics.
    Airas RK
    Eur J Biochem; 1992 Dec; 210(2):443-50. PubMed ID: 1459129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of transfer ribonucleic acid on the rate law and mechanism of the adenosine triphosphate--pyrophosphate isotope exchange reaction of an aminoacyl transfer ribonucleic acid synthetase.
    McNeil MR; Schimmel PR
    Arch Biochem Biophys; 1972 Sep; 152(1):175-9. PubMed ID: 4342105
    [No Abstract]   [Full Text] [Related]  

  • 10. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Kula MR
    Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of aminoacyl-tRNA synthetases catalyzed ATP-PPi exchange.
    Santi DV; Webster RW; Cleland WW
    Methods Enzymol; 1974; 29():620-7. PubMed ID: 4368856
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetic demonstration of the intermediate role of aminoacyl-adenylate-enzyme in the formation of valyl transfer ribonucleic acid.
    Midelfort CF; Chakraburtty K; Steinschneider A; Mehler AH
    J Biol Chem; 1975 May; 250(10):3866-73. PubMed ID: 165186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial reactions of aminoacyl-tRNA synthetases as functions of pH.
    Lui M; Chakraburtty K; Mehler AH
    J Biol Chem; 1978 Nov; 253(22):8061-4. PubMed ID: 30773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of kinetic methods to aminoacyl-tRNA synthetases.
    Midelfort CF; Mehler AH
    Methods Enzymol; 1974; 29():627-42. PubMed ID: 4368426
    [No Abstract]   [Full Text] [Related]  

  • 15. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
    Airas RK
    Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates.
    Cvetesic N; Gruic-Sovulj I
    Methods; 2017 Jan; 113():13-26. PubMed ID: 27713080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosyl-tRNA synthetase from baker's yeast. Order of substrate addition, discrimination of 20 amino acids in aminoacylation of tRNATyr-C-C-A and tRNATyr-C-C-A(3'NH2).
    Freist W; Sternbach H
    Eur J Biochem; 1988 Nov; 177(2):425-33. PubMed ID: 3056726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-participation of aminoacyl adenylates in the spermine catalyzed aminoacylation of transfer-RNA.
    Pastuszyn A; Loftfield RB
    Biochem Biophys Res Commun; 1972 May; 47(4):775-83. PubMed ID: 4337323
    [No Abstract]   [Full Text] [Related]  

  • 19. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of the aminoacylation of transfer ribonucleic acid: enzyme-product dissociation is not rate limiting.
    Lövgren TN; Pastuszyn A; Loftfield RB
    Biochemistry; 1976 Jun; 15(12):2533-40. PubMed ID: 779825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.