These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 2537210)
21. Analysis of the dominance of mutations in cAMP-binding sites of murine type I cAMP-dependent protein kinase in activation of kinase from heterozygous mutant lymphoma cells. Shuntoh H; Steinberg RA J Cell Physiol; 1991 Jan; 146(1):86-93. PubMed ID: 1846638 [TBL] [Abstract][Full Text] [Related]
22. Activation of protein kinase isoenzymes under near physiological conditions. Evidence that both types (A and B) of cAMP binding sites are involved in the activation of protein kinase by cAMP and 8-N3-cAMP. Ogreid D; Døskeland SO FEBS Lett; 1982 Dec; 150(1):161-6. PubMed ID: 6297968 [TBL] [Abstract][Full Text] [Related]
23. Rat adipose tissue cAMP-dependent protein kinase: a unique form of type II. Beebe SJ; Corbin JD Mol Cell Endocrinol; 1984 Jun; 36(1-2):67-78. PubMed ID: 6086425 [TBL] [Abstract][Full Text] [Related]
24. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Herberg FW; Taylor SS; Dostmann WR Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131 [TBL] [Abstract][Full Text] [Related]
25. Purification and characterization of adrenocortical adenosine 3',5'-monoposphate-dependent protein kinases. Ahrens H; Aiyar NV; Sharma RK Endocrinology; 1986 Jun; 118(6):2168-79. PubMed ID: 3009153 [TBL] [Abstract][Full Text] [Related]
26. Characterization of small cAMP-binding fragments of cAMP-dependent protein kinases. Rannels SR; Corbin JD J Biol Chem; 1979 Sep; 254(17):8605-10. PubMed ID: 224060 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the two classes of binding sites (A and B) of type I and type II cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. Ogreid D; Ekanger R; Suva RH; Miller JP; Døskeland SO Eur J Biochem; 1989 Apr; 181(1):19-31. PubMed ID: 2540965 [TBL] [Abstract][Full Text] [Related]
28. Mutations that prevent cyclic nucleotide binding to binding sites A or B of type I cyclic AMP-dependent protein kinase. Ogreid D; Døskeland SO; Gorman KB; Steinberg RA J Biol Chem; 1988 Nov; 263(33):17397-404. PubMed ID: 2846564 [TBL] [Abstract][Full Text] [Related]
29. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells. Russell JL; Steinberg RA J Cell Physiol; 1987 Feb; 130(2):207-13. PubMed ID: 3029147 [TBL] [Abstract][Full Text] [Related]
30. Studies of two different intrachain cGMP-binding sites of cGMP-dependent protein kinase. Corbin JD; Døskeland SO J Biol Chem; 1983 Sep; 258(18):11391-7. PubMed ID: 6309846 [TBL] [Abstract][Full Text] [Related]
31. Cyclic nucleotides modulate the release of [3H] adenosine cyclic 3',5'-phosphate bound to the regulatory moiety of protein kinase I by the catalytic subunit of the kinase. Ogreid D; Døskeland SO Biochemistry; 1983 Mar; 22(7):1686-96. PubMed ID: 6303391 [TBL] [Abstract][Full Text] [Related]
32. Crosstalk between domains in the regulatory subunit of cAMP-dependent protein kinase: influence of amino terminus on cAMP binding and holoenzyme formation. Herberg FW; Dostmann WR; Zorn M; Davis SJ; Taylor SS Biochemistry; 1994 Jun; 33(23):7485-94. PubMed ID: 8003514 [TBL] [Abstract][Full Text] [Related]
33. Evidence that cyclic adenosine 3',5'-monophosphate-dependent protein kinase activation causes pig ovarian granulosa cell differentiation, including increases in two type II subclasses of this kinase. Beebe SJ; Segaloff DL; Burks D; Beasley-Leach A; Limbird LE; Corbin JD Biol Reprod; 1989 Aug; 41(2):295-307. PubMed ID: 2553142 [TBL] [Abstract][Full Text] [Related]
34. Site-directed mutagenesis of the cAMP-binding sites of the recombinant type I regulatory subunit of cAMP-dependent protein kinase. Kuno T; Shuntoh H; Sakaue M; Saijoh K; Takeda T; Fukuda K; Tanaka C Biochem Biophys Res Commun; 1988 Jun; 153(3):1244-50. PubMed ID: 2839171 [TBL] [Abstract][Full Text] [Related]
35. Functional characterization of cAMP-binding mutations in type I protein kinase. Correll LA; Woodford TA; Corbin JD; Mellon PL; McKnight GS J Biol Chem; 1989 Oct; 264(28):16672-8. PubMed ID: 2550452 [TBL] [Abstract][Full Text] [Related]
36. Two classes of cAMP analogs which are selective for the two different cAMP-binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. Beebe SJ; Holloway R; Rannels SR; Corbin JD J Biol Chem; 1984 Mar; 259(6):3539-47. PubMed ID: 6323428 [TBL] [Abstract][Full Text] [Related]
37. Identification of a ternary complex between cAMP and a trimeric form of cAMP-dependent protein kinase. Connelly PA; Hastings TG; Reimann EM J Biol Chem; 1986 Feb; 261(5):2325-30. PubMed ID: 3003110 [TBL] [Abstract][Full Text] [Related]
38. Autophosphorylation of Mucor rouxii cAMP-dependent protein kinase and its role in holoenzyme activation. Rossi S; Guthmann M; Moreno S Cell Signal; 1992 Jul; 4(4):443-51. PubMed ID: 1419485 [TBL] [Abstract][Full Text] [Related]
39. Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinases I and II with analogs of adenosine 3',5'-cyclic phosphorothioates. Dostmann WR; Taylor SS; Genieser HG; Jastorff B; Døskeland SO; Ogreid D J Biol Chem; 1990 Jun; 265(18):10484-91. PubMed ID: 2162349 [TBL] [Abstract][Full Text] [Related]
40. Studies of functional domains of the regulatory subunit from cAMP-dependent protein kinase isozyme I. Rannels SR; Corbin JD J Cyclic Nucleotide Res; 1980; 6(3):201-15. PubMed ID: 6255020 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]