These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25372411)

  • 1. Origin of Fermi-level pinning at GaAs surfaces and interfaces.
    Colleoni D; Miceli G; Pasquarello A
    J Phys Condens Matter; 2014 Dec; 26(49):492202. PubMed ID: 25372411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron trap states at InGaAs/oxide interfaces under inversion through constant Fermi-level ab initio molecular dynamics.
    Bouzid A; Pasquarello A
    J Phys Condens Matter; 2017 Dec; 29(50):505702. PubMed ID: 29130889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual passivation of GaAs (110) surfaces using O2/H2O and trimethylaluminum.
    Kent TJ; Edmonds M; Chagarov E; Droopad R; Kummel AC
    J Chem Phys; 2013 Dec; 139(24):244706. PubMed ID: 24387387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic properties of adsorbates on GaAs(001)-c(2x8)/(2x4).
    Winn DL; Hale MJ; Grassman TJ; Sexton JZ; Kummel AC; Passlack M; Droopad R
    J Chem Phys; 2007 Oct; 127(13):134705. PubMed ID: 17919041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect causes of Fermi level pinning at the SiO/GaAs interface.
    Winn DL; Hale MJ; Grassman TJ; Kummel AC; Droopad R; Passlack M
    J Chem Phys; 2007 Feb; 126(8):084703. PubMed ID: 17343465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of electroreflectance spectrum and Franz-Keldysh effect at metal-GaAs interfaces].
    Wang B; Xu XX; Qin Z; Song N; Zhang CZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1701-4. PubMed ID: 18975783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band-Offset Analysis of Atomic Layer Deposition La
    Lou X; Gong X; Feng J; Gordon R
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28515-28519. PubMed ID: 31294539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient Evolution of the Built-in Field at Junctions of GaAs.
    Chen X; Pekarek RT; Gu J; Zakutayev A; Hurst KE; Neale NR; Yang Y; Beard MC
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40339-40346. PubMed ID: 32810402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified mechanism of the surface Fermi level pinning in III-As nanowires.
    Alekseev PA; Dunaevskiy MS; Cirlin GE; Reznik RR; Smirnov AN; Kirilenko DA; Davydov VY; Berkovits VL
    Nanotechnology; 2018 Aug; 29(31):314003. PubMed ID: 29757753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of a passivated interface between hafnium oxide and In(Ga)As(0 0 1)-(4x2).
    Clemens JB; Bishop SR; Lee JS; Kummel AC; Droopad R
    J Chem Phys; 2010 Jun; 132(24):244701. PubMed ID: 20590208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization reduction in half-metallic Heusler alloys: the effect of point defects and interfaces with semiconductors.
    Picozzi S; Freeman AJ
    J Phys Condens Matter; 2007 Aug; 19(31):315215. PubMed ID: 21694115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical bonding and fermi level pinning at metal-semiconductor interfaces.
    Tung RT
    Phys Rev Lett; 2000 Jun; 84(26 Pt 1):6078-81. PubMed ID: 10991128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure of pyridine-based SAMs on flat Au(111) surfaces: extended charge rearrangements and Fermi level pinning.
    Ma Z; Rissner F; Wang L; Heimel G; Li Q; Shuai Z; Zojer E
    Phys Chem Chem Phys; 2011 May; 13(20):9747-60. PubMed ID: 21503307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.
    Suyatin DB; Jain V; Nebol'sin VA; Trägårdh J; Messing ME; Wagner JB; Persson O; Timm R; Mikkelsen A; Maximov I; Samuelson L; Pettersson H
    Nat Commun; 2014; 5():3221. PubMed ID: 24488034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteroepitaxy of La2O3 and La(2-x)Y(x)O3 on GaAs (111)A by atomic layer deposition: achieving low interface trap density.
    Wang X; Dong L; Zhang J; Liu Y; Ye PD; Gordon RG
    Nano Lett; 2013 Feb; 13(2):594-9. PubMed ID: 23294262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft-x-ray photoemission study of chemisorption and Fermi-level pinning at the Cs/GaAs(110) and K/GaAs(110) interfaces.
    Kendelewicz T; Soukiassian P; Bakshi MH; Hurych Z; Lindau I; Spicer WE
    Phys Rev B Condens Matter; 1988 Oct; 38(11):7568-7575. PubMed ID: 9945484
    [No Abstract]   [Full Text] [Related]  

  • 17. Origin of Schottky barriers in gold contacts on GaAs110.
    Reusch TC; Wenderoth M; Winking L; Quaas N; Ulbrich RG
    Phys Rev Lett; 2004 Nov; 93(20):206801. PubMed ID: 15600951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier.
    Ping Y; Goddard WA; Galli GA
    J Am Chem Soc; 2015 Apr; 137(16):5264-7. PubMed ID: 25867053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure of hybrid interfaces for polymer-based electronics.
    Fahlman M; Crispin A; Crispin X; Henze SK; de Jong MP; Osikowicz W; Tengstedt C; Salaneck WR
    J Phys Condens Matter; 2007 May; 19(18):183202. PubMed ID: 21690980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GaN as an interfacial passivation layer: tuning band offset and removing fermi level pinning for III-V MOS devices.
    Zhang Z; Cao R; Wang C; Li HB; Dong H; Wang WH; Lu F; Cheng Y; Xie X; Liu H; Cho K; Wallace R; Wang W
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5141-9. PubMed ID: 25639492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.