BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25372616)

  • 1. Simulation of the recharging method of implantable biosensors based on a wearable incoherent light source.
    Song Y; Hao Q; Kong X; Hu L; Cao J; Gao T
    Sensors (Basel); 2014 Nov; 14(11):20687-701. PubMed ID: 25372616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.
    Li Y; Song Y; Kong X; Li M; Zhao Y; Hao Q; Gao T
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27626422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcutaneous battery recharging by volume conduction and its circuit modeling.
    Tang Z; Sclabassi RJ; Sun C; Hackworth SA; Zhao J; Cui XT; Sun M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():644-7. PubMed ID: 17945991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Far-field RF powering of implantable devices: safety considerations.
    Bercich RA; Duffy DR; Irazoqui PP
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2107-12. PubMed ID: 23412566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal operating frequency in wireless power transmission for implantable devices.
    Poon AS; O'Driscoll S; Meng TH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5674-9. PubMed ID: 18003300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless energy transfer platform for medical sensors and implantable devices.
    Zhang F; Hackworth SA; Liu X; Chen H; Sclabassi RJ; Sun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1045-8. PubMed ID: 19964948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission power requirements for novel ZigBee implants in the gastrointestinal tract.
    Valdastri P; Menciassi A; Dario P
    IEEE Trans Biomed Eng; 2008 Jun; 55(6):1705-10. PubMed ID: 18714834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulative and experimental research on wireless power transmission technique in implantable medical device.
    Yu Y; Hao H; Wang W; Li L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():923-6. PubMed ID: 19963736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.
    Watada M; Saisho R; Kim YJ; Ohuchi K; Takatani S; Um YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1035-8. PubMed ID: 18002137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring role of microbatteries in enhancing sustainability and functionality of implantable biosensors and bioelectronics.
    Yoo H; Mahato M; Oh W; Ha J; Han H; Ahn CW; Oh IK
    Biosens Bioelectron; 2024 Sep; 260():116419. PubMed ID: 38830292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distant energy transfer for artificial human implants.
    Theodoridis MP; Mollov SV
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1931-8. PubMed ID: 16285397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research for transcutaneous energy transfer based on PCB coreless planar circular spiral inductor coils].
    Wu B; Huang H; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):749-52. PubMed ID: 20842838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and optimization of spiral circular inductive coupling link for bio-implanted applications on air and within human tissue.
    Mutashar S; Hannan MA; Samad SA; Hussain A
    Sensors (Basel); 2014 Jun; 14(7):11522-41. PubMed ID: 24984057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-performance transcutaneous battery charger for medical implants.
    Artan N; Vanjani H; Vashist G; Fu Z; Bhakthavatsala S; Ludvig N; Medveczky G; Chao H
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1581-4. PubMed ID: 21096386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional, multiwavelength Monte Carlo simulations of dermally implantable luminescent sensors.
    Long R; McShane M
    J Biomed Opt; 2010; 15(2):027011. PubMed ID: 20459285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of optical bottle beams by incoherent white-light vortices.
    Shvedov VG; Izdebskaya YV; Rode AV; Desyatnikov A; Krolikowski W; Kivshar YS
    Opt Express; 2008 Dec; 16(25):20902-7. PubMed ID: 19065229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue.
    Tang Q; Tummala N; Gupta SK; Schwiebert L
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1285-94. PubMed ID: 16041992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MEMS-based power generation techniques for implantable biosensing applications.
    Lueke J; Moussa WA
    Sensors (Basel); 2011; 11(2):1433-60. PubMed ID: 22319362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.