These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2537288)

  • 1. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose.
    Suárez G; Rajaram R; Oronsky AL; Gawinowicz MA
    J Biol Chem; 1989 Mar; 264(7):3674-9. PubMed ID: 2537288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonenzymatic browning of proteins and the sorbitol pathway.
    Suarez G
    Prog Clin Biol Res; 1989; 304():141-62. PubMed ID: 2675027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fructose-induced fluorescence generation of reductively methylated glycated bovine serum albumin: evidence for nonenzymatic glycation of Amadori adducts.
    Suárez G; Maturana J; Oronsky AL; Raventós-Suárez C
    Biochim Biophys Acta; 1991 Sep; 1075(1):12-9. PubMed ID: 1892863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructated protein is more resistant to ATP-dependent proteolysis than glucated protein possibly as a result of higher content of Maillard fluorophores.
    Suárez G; Etlinger JD; Maturana J; Weitman D
    Arch Biochem Biophys; 1995 Aug; 321(1):209-13. PubMed ID: 7639522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure of common glycation assays to detect glycation by fructose.
    Ahmed N; Furth AJ
    Clin Chem; 1992 Jul; 38(7):1301-3. PubMed ID: 1623595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatographic separation of glycated peptide isomers derived from glucose and fructose.
    Schmutzler S; Hoffmann R
    Anal Bioanal Chem; 2022 Sep; 414(23):6801-6812. PubMed ID: 35922676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivities of D-glucose and D-fructose during glycation of bovine serum albumin.
    Yeboah FK; Alli I; Yaylayan VA
    J Agric Food Chem; 1999 Aug; 47(8):3164-72. PubMed ID: 10552625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological detection of fructated proteins in vitro and in vivo.
    Miyazawa N; Kawasaki Y; Fujii J; Theingi M; Hoshi A; Hamaoka R; Matsumoto A; Uozumi N; Teshima T; Taniguchi N
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):101-7. PubMed ID: 9806890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sialic acid on glycation-induced fluorescence of albumin.
    Lipovac V; Gavella M; Sverko V
    Acta Diabetol; 1994 Sep; 31(3):156-9. PubMed ID: 7827355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of bovine serum albumin glycation by ribose and fructose in vitro and in vivo.
    Mou L; Hu P; Cao X; Chen Y; Xu Y; He T; Wei Y; He R
    Biochim Biophys Acta Mol Basis Dis; 2022 Jan; 1868(1):166283. PubMed ID: 34601015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose-related glycation.
    Oimomi M; Nakamichi T; Ohara T; Sakai M; Igaki N; Hata F; Baba S
    Diabetes Res Clin Pract; 1989 Aug; 7(2):137-9. PubMed ID: 2776653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry.
    Frolov A; Hoffmann P; Hoffmann R
    J Mass Spectrom; 2006 Nov; 41(11):1459-69. PubMed ID: 17063450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species.
    Goodarzi M; Moosavi-Movahedi AA; Habibi-Rezaei M; Shourian M; Ghourchian H; Ahmad F; Farhadi M; Saboury AA; Sheibani N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():561-7. PubMed ID: 24813286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential inhibition of Maillard protein fluorescence by nitric oxide donors.
    Suárez G; Wang XH
    Nitric Oxide; 1998; 2(6):475-80. PubMed ID: 10342491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase synthesis of D-fructose-derived Heyns peptides utilizing N
    Schmutzler S; Knappe D; Marx A; Hoffmann R
    Amino Acids; 2021 Jun; 53(6):881-891. PubMed ID: 33934222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro.
    Sharma SD; Pandey BN; Mishra KP; Sivakami S
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):233-42. PubMed ID: 12186738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and characterization of antibodies to advanced glycation products on proteins.
    Nakayama H; Taneda S; Kuwajima S; Aoki S; Kuroda Y; Misawa K; Nakagawa S
    Biochem Biophys Res Commun; 1989 Jul; 162(2):740-5. PubMed ID: 2474294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of glycated residue numbers on heat-induced structural changes of bovine serum albumin.
    Liu J; Xing X; Jing H
    J Sci Food Agric; 2018 Apr; 98(6):2168-2175. PubMed ID: 28960315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose and free radicals impair the antioxidant properties of serum albumin.
    Bourdon E; Loreau N; Blache D
    FASEB J; 1999 Feb; 13(2):233-44. PubMed ID: 9973311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.