These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25372973)

  • 21. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding carbon nanotube channel formation in the lipid membrane.
    Choi MK; Kim H; Lee BH; Kim T; Rho J; Kim MK; Kim K
    Nanotechnology; 2018 Mar; 29(11):115702. PubMed ID: 29332844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the selective partitioning of cations into negatively charged nanopores in water.
    Yang L; Garde S
    J Chem Phys; 2007 Feb; 126(8):084706. PubMed ID: 17343468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of PEG additives and pore rim functionalization on water transport through sub-1 nm carbon nanotube porins.
    Tunuguntla RH; Hu AY; Zhang Y; Noy A
    Faraday Discuss; 2018 Sep; 209(0):359-369. PubMed ID: 29987303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gated ion transport through dense carbon nanotube membranes.
    Yu M; Funke HH; Falconer JL; Noble RD
    J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes.
    Zimmerli U; Koumoutsakos P
    Biophys J; 2008 Apr; 94(7):2546-57. PubMed ID: 18178663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic control of H+ current in a bioprotonic device with carbon nanotube porins.
    Hemmatian Z; Tunuguntla RH; Noy A; Rolandi M
    PLoS One; 2019; 14(2):e0212197. PubMed ID: 30794578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast Permeation of Small Ions in Carbon Nanotubes.
    Buchsbaum SF; Jue ML; Sawvel AM; Chen C; Meshot ER; Park SJ; Wood M; Wu KJ; Bilodeau CL; Aydin F; Pham TA; Lau EY; Fornasiero F
    Adv Sci (Weinh); 2021 Feb; 8(3):2001802. PubMed ID: 33552850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mixture effect on ionic selectivity and permeability of nanotubes.
    Wang M; Shen W; Wang X; Zhang G; Zhao S; Liu F
    Nanoscale Adv; 2020 Sep; 2(9):3834-3840. PubMed ID: 36132796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores.
    Agrawal KV; Drahushuk LW; Strano MS
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins.
    Yao YC; Taqieddin A; Alibakhshi MA; Wanunu M; Aluru NR; Noy A
    ACS Nano; 2019 Nov; 13(11):12851-12859. PubMed ID: 31682401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.
    Amiri H; Shepard KL; Nuckolls C; Hernández Sánchez R
    Nano Lett; 2017 Feb; 17(2):1204-1211. PubMed ID: 28103039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores.
    McGinnis RL; Reimund K; Ren J; Xia L; Chowdhury MR; Sun X; Abril M; Moon JD; Merrick MM; Park J; Stevens KA; McCutcheon JR; Freeman BD
    Sci Adv; 2018 Mar; 4(3):e1700938. PubMed ID: 29536038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.
    Sheng J; Zhu Q; Zeng X; Yang Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11009-11015. PubMed ID: 28264153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH-tunable ion selectivity in carbon nanotube pores.
    Fornasiero F; In JB; Kim S; Park HG; Wang Y; Grigoropoulos CP; Noy A; Bakajin O
    Langmuir; 2010 Sep; 26(18):14848-53. PubMed ID: 20715879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon Nanotube Porins in Amphiphilic Block Copolymers as Fully Synthetic Mimics of Biological Membranes.
    Sanborn JR; Chen X; Yao YC; Hammons JA; Tunuguntla RH; Zhang Y; Newcomb CC; Soltis JA; De Yoreo JJ; Van Buuren A; Parikh AN; Noy A
    Adv Mater; 2018 Dec; 30(51):e1803355. PubMed ID: 30368926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion selectivity of the channels formed by pardaxin, an ionophore, in bilayer membranes.
    Shi YL; Edwards C; Lazarovici P
    Nat Toxins; 1995; 3(3):151-5. PubMed ID: 7544199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes.
    Shao Q; Zhou J; Lu L; Lu X; Zhu Y; Jiang S
    Nano Lett; 2009 Mar; 9(3):989-94. PubMed ID: 19206198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energetic and Dynamic Analysis of Transport of Na
    Song Y; Lee JH; Hwang H; Schatz GC; Hwang H
    J Phys Chem B; 2016 Nov; 120(46):11912-11922. PubMed ID: 27934398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding Mono- and Bivalent Ion Selectivities of Nanoporous Graphene Using Ionic and Bi-ionic Potentials.
    Ghosh M; Madauß L; Schleberger M; Lebius H; Benyagoub A; Wood JA; Lammertink RGH
    Langmuir; 2020 Jul; 36(26):7400-7407. PubMed ID: 32498516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.