These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25373108)

  • 1. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation.
    Crea S; Cipriani C; Donati M; Carrozza MC; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):250-7. PubMed ID: 25373108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory feedback in upper limb prosthetics.
    Antfolk C; D'Alonzo M; Rosén B; Lundborg G; Sebelius F; Cipriani C
    Expert Rev Med Devices; 2013 Jan; 10(1):45-54. PubMed ID: 23278223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation.
    Maqbool HF; Husman MAB; Awad MI; Abouhossein A; Iqbal N; Dehghani-Sanij AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1500-1509. PubMed ID: 28114026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial biomechanical evaluation of wearable tactile feedback system for gait rehabilitation in peripheral neuropathy.
    McKinney Z; Heberer K; Fowler E; Greenberg M; Nowroozi B; Grundfest W
    Stud Health Technol Inform; 2014; 196():271-7. PubMed ID: 24732521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees.
    Zheng E; Wang L; Wei K; Wang Q
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses.
    Furse A; Cleghorn W; Andrysek J
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of stair ascent and descent with a powered transfemoral prosthesis.
    Lawson BE; Varol HA; Huff A; Erdemir E; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):466-73. PubMed ID: 23096120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary limb motion estimation for the control of active knee prostheses.
    Vallery H; Burgkart R; Hartmann C; Mitternacht J; Riener R; Buss M
    Biomed Tech (Berl); 2011 Feb; 56(1):45-51. PubMed ID: 21303189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A running controller for a powered transfemoral prosthesis.
    Huff AM; Lawson BE; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4168-71. PubMed ID: 23366846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback.
    Antfolk C; D'Alonzo M; Controzzi M; Lundborg G; Rosén B; Sebelius F; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):112-20. PubMed ID: 23033439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical consideration based on the unrestrained gait measurement of trans-femoral amputee with a prosthetic limb.
    Hayashi Y; Tsujiuchi N; Koizumi T; Matsuda Y; Tsuchiya Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1612-5. PubMed ID: 22254631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary report on the use of a practical biofeedback device for gait training of above-knee amputees.
    Flowers WC; Cullen CP; Tyra KP
    J Rehabil Res Dev; 1986 Oct; 23(4):7-18. PubMed ID: 3820121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin.
    Antfolk C; Björkman A; Frank SO; Sebelius F; Lundborg G; Rosen B
    J Rehabil Med; 2012 Jul; 44(8):702-7. PubMed ID: 22729800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to determine the optimal features for control of a powered lower-limb prostheses.
    Farrell MT; Herr H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6041-6. PubMed ID: 22255717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Biomed Tech (Berl); 2012 Dec; 57(6):435-44. PubMed ID: 23241569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrotactile detection thresholds for chest skin of amputees following targeted reinnervation surgery.
    Schultz AE; Marasco PD; Kuiken TA
    Brain Res; 2009 Jan; 1251():121-9. PubMed ID: 19059226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
    Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL
    Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait initiation in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Apr; 27(3):423-30. PubMed ID: 17624782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Frittoli S; Frigo CA
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):460-5. PubMed ID: 22221344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis.
    Simon AM; Ingraham KA; Spanias JA; Young AJ; Finucane SB; Halsne EG; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1164-1171. PubMed ID: 28113980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.