These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25373559)

  • 1. The study on hemodynamic effect of varied support models of BJUT-II VAD on coronary artery: a primary CFD study.
    Zhang Q; Gao B; Gu K; Chang Y; Xu J
    ASAIO J; 2014; 60(6):643-51. PubMed ID: 25373559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study.
    Gu K; Gao B; Chang Y; Zeng Y
    Med Sci Monit; 2016 Jul; 22():2284-94. PubMed ID: 27363758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hemodynamic effect of the support mode for the intra-aorta pump on the cardiovascular system.
    Gao B; Chang Y; Xuan Y; Zeng Y; Liu Y
    Artif Organs; 2013 Feb; 37(2):157-65. PubMed ID: 23379287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Analysis of Intra-Ventricular Flow Pattern Under Partial and Full Support of BJUT-II VAD.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2017 Feb; 23():1043-1054. PubMed ID: 28239142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2016 Jul; 22():2576-88. PubMed ID: 27440399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hemodynamic effect of phase differences between the BJUT-II ventricular assist device and native heart on the cardiovascular system.
    Gu K; Gao B; Chang Y; Zeng Y
    Artif Organs; 2014 Nov; 38(11):914-23. PubMed ID: 24712827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation analysis of multi-scale computational fluid dynamics on hemodynamic parameters modulated by pulsatile working modes for the centrifugal and axial left ventricular assist devices.
    Huo M; Giridharan GA; Sethu P; Qu P; Qin K; Wang Y
    Comput Biol Med; 2024 Feb; 169():107788. PubMed ID: 38091724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries.
    Beier S; Ormiston J; Webster M; Cater J; Norris S; Medrano-Gracia P; Young A; Cowan B
    J Biomech; 2016 Jun; 49(9):1570-1582. PubMed ID: 27062590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical effects of the novel series LVAD on the aortic valve.
    Gao B; Kang Y; Zhang Q; Chang Y
    Comput Methods Programs Biomed; 2020 Dec; 197():105763. PubMed ID: 32998103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic analysis of outflow grafting positions of a ventricular assist device using closed-loop multiscale CFD simulations: Preliminary results.
    Neidlin M; Corsini C; Sonntag SJ; Schulte-Eistrup S; Schmitz-Rode T; Steinseifer U; Pennati G; Kaufmann TAS
    J Biomech; 2016 Sep; 49(13):2718-2725. PubMed ID: 27298155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD.
    Chen Z; Jena SK; Giridharan GA; Sobieski MA; Koenig SC; Slaughter MS; Griffith BP; Wu ZJ
    Med Biol Eng Comput; 2019 Apr; 57(4):807-818. PubMed ID: 30406881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta.
    Karmonik C; Partovi S; Loebe M; Schmack B; Weymann A; Lumsden AB; Karck M; Ruhparwar A
    J Thorac Cardiovasc Surg; 2014 Apr; 147(4):1326-1333.e1. PubMed ID: 24345553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.
    Martin DM; Murphy EA; Boyle FJ
    Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of captopril on the performance of the control strategies of BJUT-II VAD.
    Gu K; Gao B; Chang Y; Zeng Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):123. PubMed ID: 28155689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analyses of aortic blood flow under varying speed CF-LVAD support.
    Sun P; Bozkurt S; Sorguven E
    Comput Biol Med; 2020 Dec; 127():104058. PubMed ID: 33091606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of stent malapposition on intracoronary flow dynamics: An optical coherence tomography-based patient-specific study.
    Wei L; Wang J; Chen Q; Li Z
    Med Eng Phys; 2021 Aug; 94():26-32. PubMed ID: 34303498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hemodynamics and blood trauma in axial blood pump under different operating models.
    Zhang Y; Wu X; Wang Y; Liu H; Liu GM
    Artif Organs; 2022 Nov; 46(11):2159-2170. PubMed ID: 35735995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical effects of the working modes of LVADs on the aortic valve: A primary numerical study.
    Gao B; Zhang Q
    Comput Methods Programs Biomed; 2020 Sep; 193():105512. PubMed ID: 32344270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The study on hemodynamic effect of series type LVAD on aortic blood flow pattern: a primary numerical study.
    Zhang Q; Gao B; Chang Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):163. PubMed ID: 28155672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.