These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
7. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Sticker D; Rothbauer M; Lechner S; Hehenberger MT; Ertl P Lab Chip; 2015 Dec; 15(24):4542-54. PubMed ID: 26524977 [TBL] [Abstract][Full Text] [Related]
8. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
9. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite. Han YL; Wang W; Hu J; Huang G; Wang S; Lee WG; Lu TJ; Xu F Lab Chip; 2013 Dec; 13(24):4745-9. PubMed ID: 24172608 [TBL] [Abstract][Full Text] [Related]
11. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices. Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL J Vis Exp; 2007; (9):410. PubMed ID: 18989450 [TBL] [Abstract][Full Text] [Related]
12. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds. Chao SH; Carlson R; Meldrum DR Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386 [TBL] [Abstract][Full Text] [Related]
13. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells. Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523 [TBL] [Abstract][Full Text] [Related]
14. Foil assisted replica molding for fabrication of microfluidic devices and their application in vitro. Micheal IJ; Vidyasagar AJ; Bokara KK; Mekala NK; Asthana A; Rao ChM Lab Chip; 2014 Oct; 14(19):3695-9. PubMed ID: 25102283 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of microfluidic devices containing patterned microwell arrays. Henley WH; Dennis PJ; Ramsey JM Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of three-dimensional microarray structures by controlling the thickness and elasticity of poly(dimethylsiloxane) membrane. Lee DH; Park JY; Lee EJ; Choi YY; Kwon GH; Kim BM; Lee SH Biomed Microdevices; 2010 Feb; 12(1):49-54. PubMed ID: 19777351 [TBL] [Abstract][Full Text] [Related]
18. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation. Madadi H; Mohammadi M; Casals-Terré J; López RC Electrophoresis; 2013 Dec; 34(22-23):3126-32. PubMed ID: 24114728 [TBL] [Abstract][Full Text] [Related]
19. Control and automation of multilayered integrated microfluidic device fabrication. Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp. Kung YC; Huang KW; Fan YJ; Chiou PY Lab Chip; 2015 Apr; 15(8):1861-8. PubMed ID: 25710255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]