These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 25373943)
1. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid. Silva GT J Acoust Soc Am; 2014 Nov; 136(5):2405-13. PubMed ID: 25373943 [TBL] [Abstract][Full Text] [Related]
2. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime. Lee J Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757 [TBL] [Abstract][Full Text] [Related]
3. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere. Mitri FG Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103 [TBL] [Abstract][Full Text] [Related]
4. Computing the acoustic radiation force exerted on a sphere using the translational addition theorem. Silva GT; Baggio AL; Lopes JH; Mitri FG IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):576-83. PubMed ID: 25768823 [TBL] [Abstract][Full Text] [Related]
5. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid. Mitri FG; Fellah ZE Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000 [TBL] [Abstract][Full Text] [Related]
6. Calculation of acoustical radiation force on microsphere by spherically-focused source. Wu R; Liu X; Liu J; Gong X Ultrasonics; 2014 Sep; 54(7):1977-83. PubMed ID: 24882021 [TBL] [Abstract][Full Text] [Related]
7. Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid. Lopes JH; Azarpeyvand M; Silva GT IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):186-97. PubMed ID: 26529753 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid. Wang J; Dual J J Acoust Soc Am; 2011 Jun; 129(6):3490-501. PubMed ID: 21682376 [TBL] [Abstract][Full Text] [Related]
9. Potential-well model in acoustic tweezers. Kang ST; Yeh CK IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720 [TBL] [Abstract][Full Text] [Related]
10. Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid. Leão-Neto JP; Silva GT Ultrasonics; 2016 Sep; 71():1-11. PubMed ID: 27254398 [TBL] [Abstract][Full Text] [Related]
11. Spin reversal and orbital torques on a viscous fluid Rayleigh sphere located arbitrarily in acoustical Bessel vortex (spiraling) beams. Mitri FG Ultrasonics; 2016 Dec; 72():57-65. PubMed ID: 27479229 [TBL] [Abstract][Full Text] [Related]
12. Frequency dependence of the acoustic radiation force acting on absorbing cylindrical shells. Mitri FG Ultrasonics; 2005 Feb; 43(4):271-7. PubMed ID: 15567204 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing. Mitri FG; Fellah ZE Ultrasonics; 2014 Jan; 54(1):351-7. PubMed ID: 23683798 [TBL] [Abstract][Full Text] [Related]
14. Acoustic microstreaming around an encapsulated particle. Doinikov AA; Bouakaz A J Acoust Soc Am; 2010 Mar; 127(3):1218-27. PubMed ID: 20329820 [TBL] [Abstract][Full Text] [Related]
16. Shear waves in inhomogeneous, compressible fluids in a gravity field. Godin OA J Acoust Soc Am; 2014 Mar; 135(3):1071-82. PubMed ID: 24606251 [TBL] [Abstract][Full Text] [Related]
17. Experimental study on inter-particle acoustic forces. Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249 [TBL] [Abstract][Full Text] [Related]
18. Potential-well model in acoustic tweezers--comment. Mitri FG IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):662-5. PubMed ID: 21429858 [TBL] [Abstract][Full Text] [Related]
19. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions. Liu HC; Li Y; Chen R; Jung H; Shung KK Ultrasound Med Biol; 2017 Apr; 43(4):852-859. PubMed ID: 28236533 [TBL] [Abstract][Full Text] [Related]
20. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium. Annamalai S; Balachandar S; Parmar MK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053008. PubMed ID: 25353881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]