These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25373945)

  • 1. Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.
    Holzinger T; Emmert T; Polifke W
    J Acoust Soc Am; 2014 Nov; 136(5):2432-40. PubMed ID: 25373945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines.
    Penelet G; Gusev V; Lotton P; Bruneau M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016625. PubMed ID: 16090125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoacoustics with idealized heat exchangers and no stack.
    Wakeland RS; Keolian RM
    J Acoust Soc Am; 2002 Jun; 111(6):2654-64. PubMed ID: 12083198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optimal stack spacing for thermoacoustic refrigeration.
    Tijani ME; Zeegers JC; de Waele AT
    J Acoust Soc Am; 2002 Jul; 112(1):128-33. PubMed ID: 12141337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high frequency, power, and efficiency diaphragm acoustic-to-electric transducer for thermoacoustic engines and refrigerators.
    Steiner TW; Antonelli KB; Archibald GDS; De Chardon B; Gottfried KT; Malekian M; Kostka P
    J Acoust Soc Am; 2021 Feb; 149(2):948. PubMed ID: 33639786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review on the conversion of thermoacoustic power into electricity.
    Timmer MAG; de Blok K; van der Meer TH
    J Acoust Soc Am; 2018 Feb; 143(2):841. PubMed ID: 29495704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a stack on Rayleigh streaming cells investigated by laser Doppler velocimetry for application to thermoacoustic devices (L).
    Moreau S; Bailliet H; Valière JC
    J Acoust Soc Am; 2009 Jun; 125(6):3514-7. PubMed ID: 19507931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2003 Mar; 113(3):1317-24. PubMed ID: 12656366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensation in a steady-flow thermoacoustic refrigerator.
    Hiller RA; Swift GW
    J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices.
    Mironov M; Gusev V; Auregan Y; Lotton P; Bruneau M; Piatakov P
    J Acoust Soc Am; 2002 Aug; 112(2):441-5. PubMed ID: 12186024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance measurements on a thermoacoustic refrigerator driven at high amplitudes.
    Poese ME; Garrett SL
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2480-6. PubMed ID: 10830371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of bulk acoustic wave devices built on piezoelectric stack structures: impedance matrix analysis and network representation.
    Zhang VY; Dubus B; Lefebvre JE; Gryba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):704-16. PubMed ID: 18407860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic streaming in annular thermoacoustic prime-movers.
    Gusev V; Job S; Bailliet H; Lotton P; Bruneau M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):934-45. PubMed ID: 11008797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test-bench for the experimental characterization of porous material used in thermoacoustic refrigerators.
    Poignand G; Olivier C; Penelet G
    J Acoust Soc Am; 2022 Nov; 152(5):2804. PubMed ID: 36456285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of thermoacoustic shock waves in a resonance tube.
    Biwa T; Sobata K; Otake S; Yazaki T
    J Acoust Soc Am; 2014 Sep; 136(3):965. PubMed ID: 25190371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing bidirectional impulse turbines for thermoacoustic engines.
    Timmer MAG; van der Meer TH
    J Acoust Soc Am; 2020 Apr; 147(4):2348. PubMed ID: 32359303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.