These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25373950)

  • 1. Analysis of shear-wave attenuation in unconsolidated sands and glass beads.
    Buckingham MJ
    J Acoust Soc Am; 2014 Nov; 136(5):2478-88. PubMed ID: 25373950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of broadband models for sand sediments.
    Buchanan JL
    J Acoust Soc Am; 2006 Dec; 120(6):3584-98. PubMed ID: 17225388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain-size dependence of shear wave speed dispersion and attenuation in granular marine sediments.
    Kimura M
    J Acoust Soc Am; 2014 Jul; 136(1):EL53-9. PubMed ID: 24993238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ measurements of sediment acoustic properties in Currituck Sound and comparison to models.
    Lee KM; Ballard MS; McNeese AR; Muir TG; Wilson PS; Costley RD; Hathaway KK
    J Acoust Soc Am; 2016 Nov; 140(5):3593. PubMed ID: 27908029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2014 Jun; 135(6):3264-79. PubMed ID: 24907791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear wave speed dispersion and attenuation in granular marine sediments.
    Kimura M
    J Acoust Soc Am; 2013 Jul; 134(1):144-55. PubMed ID: 23862793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comments on "On pore fluid viscosity and the wave properties of saturated granular materials including marine sediments" [J. Acoust. Soc. Am. 122, 1486-1501 (2007)].
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2010 Apr; 127(4):2095-8; discussion 2099-102. PubMed ID: 20369987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation and applications of a modified gap stiffness model for granular marine sediments.
    Kimura M
    J Acoust Soc Am; 2008 May; 123(5):2542-52. PubMed ID: 18529173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2008 Nov; 124(5):EL296-301. PubMed ID: 19045681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of tortuosity, permeability, and pore radius of water-saturated unconsolidated glass beads and sands.
    Kimura M
    J Acoust Soc Am; 2018 May; 143(5):3154. PubMed ID: 29857715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-data comparison of high frequency compressional wave attenuation in water-saturated granular medium with bimodal grain size distribution.
    Yang H; Seong W; Lee K
    Ultrasonics; 2018 Jan; 82():161-170. PubMed ID: 28843093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of three geoacoustic models using Bayesian inversion and selection techniques applied to wave speed and attenuation measurements.
    Bonomo AL; Isakson MJ
    J Acoust Soc Am; 2018 Apr; 143(4):2501. PubMed ID: 29716256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inversion for Biot parameters in water-saturated sand.
    Chotiros NR
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1853-68. PubMed ID: 12430798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control mechanism of P-wave attenuation in unconsolidated porous media.
    Li G; Li X; Liu K
    J Acoust Soc Am; 2024 Aug; 156(2):891-897. PubMed ID: 39120871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave speed and attenuation profiles in a stratified marine sediment: Geo-acoustic modeling of seabed layering using the viscous grain shearing theory.
    Buckingham MJ
    J Acoust Soc Am; 2020 Aug; 148(2):962. PubMed ID: 32873014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximate expressions for viscous attenuation in marine sediments: relating Biot's "critical" and "peak" frequencies.
    Turgut A
    J Acoust Soc Am; 2000 Aug; 108(2):513-8. PubMed ID: 10955615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustics of marine sediment under compaction: binary grain-size model and viscoelastic extension of Biot's theory.
    Leurer KC; Brown C
    J Acoust Soc Am; 2008 Apr; 123(4):1941-51. PubMed ID: 18397002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic acoustoelastic testing of weakly pre-loaded unconsolidated water-saturated glass beads.
    Renaud G; Callé S; Defontaine M
    J Acoust Soc Am; 2010 Dec; 128(6):3344-54. PubMed ID: 21218868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adding thermal and granularity effects to the effective density fluid model.
    Williams KL
    J Acoust Soc Am; 2013 May; 133(5):EL431-7. PubMed ID: 23656105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.