These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25373979)

  • 1. Perceptual consequences of changes in epilaryngeal area and shape.
    Samlan RA; Kreiman J
    J Acoust Soc Am; 2014 Nov; 136(5):2798-806. PubMed ID: 25373979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Left-Right Asymmetries on Voice Quality in Simulated Paramedian Vocal Fold Paralysis.
    Samlan RA; Story BH
    J Speech Lang Hear Res; 2017 Feb; 60(2):306-321. PubMed ID: 28199505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw.
    Guzman M; Laukkanen AM; Krupa P; Horáček J; Švec JG; Geneid A
    J Voice; 2013 Jul; 27(4):523.e19-34. PubMed ID: 23683806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic and perceptual effects of left-right laryngeal asymmetries based on computational modeling.
    Samlan RA; Story BH; Lotto AJ; Bunton K
    J Speech Lang Hear Res; 2014 Oct; 57(5):1619-37. PubMed ID: 24845730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of vocal tract constrictions on aerodynamic measures in a synthetic vocal fold model.
    May NA; Scherer RC
    J Acoust Soc Am; 2023 Nov; 154(5):3310-3320. PubMed ID: 37983543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of physiological adjustments on the perceptual and acoustical characteristics of simulated laryngeal vocal tremor.
    Lester RA; Story BH
    J Acoust Soc Am; 2015 Aug; 138(2):953-63. PubMed ID: 26328711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptual Evaluation of Vocal Fold Vibratory Asymmetry.
    Azar SS; Pillutla P; Evans LK; Zhang Z; Kreiman J; Chhetri DK
    Laryngoscope; 2021 Dec; 131(12):2740-2746. PubMed ID: 34106487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thyroplasty type I on vocal fold vibration.
    Omori K; Slavit DH; Kacker A; Blaugrund SM; Kojima H
    Laryngoscope; 2000 Jul; 110(7):1086-91. PubMed ID: 10892675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling.
    Samlan RA; Story BH; Bunton K
    J Speech Lang Hear Res; 2013 Aug; 56(4):1209-23. PubMed ID: 23785184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling.
    Samlan RA; Story BH
    J Speech Lang Hear Res; 2011 Oct; 54(5):1267-83. PubMed ID: 21498582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
    Forero M LA; Kohler M; Vellasco MM; Cataldo E
    J Voice; 2016 Sep; 30(5):549-56. PubMed ID: 26474715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-speed laryngoscopic investigation of aryepiglottic trilling.
    Moisik SR; Esling JH; Crevier-Buchman L
    J Acoust Soc Am; 2010 Mar; 127(3):1548-58. PubMed ID: 20329855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the epilarynx area on vocal fold dynamics and the primary voice signal.
    Döllinger M; Berry DA; Luegmair G; Hüttner B; Bohr C
    J Voice; 2012 May; 26(3):285-92. PubMed ID: 21708451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective voice quality analysis before and after onset of unilateral vocal fold paralysis.
    Hartl DM; Hans S; Vaissière J; Riquet M; Brasnu DF
    J Voice; 2001 Sep; 15(3):351-61. PubMed ID: 11575632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.