BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25374381)

  • 1. Posterior Cervicothoracic Instrumentation: Testing the Clinical Efficacy of Tapered Rods (Dual-Diameter Rods).
    Kulkarni AG; Dhruv AN; Bassi AJ
    J Spinal Disord Tech; 2015 Dec; 28(10):382-8. PubMed ID: 25374381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posterior cervicothoracic instrumentation in spine tumors.
    Mazel C; Hoffmann E; Antonietti P; Grunenwald D; Henry M; Williams J
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1246-53. PubMed ID: 15167665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurological and functional outcome after unstable cervicothoracic junction injury treated by posterior reduction and synthesis.
    Lenoir T; Hoffmann E; Thevenin-Lemoine C; Lavelle G; Rillardon L; Guigui P
    Spine J; 2006; 6(5):507-13. PubMed ID: 16934719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Surgical treatment for disorders of the cervicothoracic junction region].
    StulĂ­k J; Vyskocil T; Sebesta P; Kryl J; Pafko P
    Acta Chir Orthop Traumatol Cech; 2005; 72(4):213-20. PubMed ID: 16194439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral mass screw-rod fixation of the cervical spine: a prospective clinical series with 1-year follow-up.
    Deen HG; Birch BD; Wharen RE; Reimer R
    Spine J; 2003; 3(6):489-95. PubMed ID: 14609694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How I do it: tapered rod placement across the cervicothoracic junction for augmented posterior constructs.
    Clifton W; Damon A; Pichelmann M
    Acta Neurochir (Wien); 2019 Dec; 161(12):2429-2431. PubMed ID: 31696301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of cervicothoracic junction osteotomy in cadaveric model of ankylosing spondylitis: effect of rod material and diameter.
    Scheer JK; Tang JA; Deviren V; Acosta F; Buckley JM; Pekmezci M; McClellan RT; Ames CP
    J Neurosurg Spine; 2011 Mar; 14(3):330-5. PubMed ID: 21235305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative biomechanical analysis of spinal instability and instrumentation of the cervicothoracic junction: an in vitro human cadaveric model.
    Prybis BG; Tortolani PJ; Hu N; Zorn CM; McAfee PC; Cunningham BW
    J Spinal Disord Tech; 2007 May; 20(3):233-8. PubMed ID: 17473645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posterior-only stabilization of 2-column and 3-column injuries at the cervicothoracic junction: a biomechanical study.
    O'Brien JR; Dmitriev AE; Yu W; Gelb D; Ludwig S
    J Spinal Disord Tech; 2009 Jul; 22(5):340-6. PubMed ID: 19525789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of spinal instrumentation on kinematics at the cervicothoracic junction: emphasis on soft-tissue response in an in vitro human cadaveric model.
    Kretzer RM; Hu N; Umekoji H; Sciubba DM; Jallo GI; McAfee PC; Tortolani PJ; Cunningham BW
    J Neurosurg Spine; 2010 Oct; 13(4):435-42. PubMed ID: 20887140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Considerations for the use of C7 crossing laminar screws in subaxial and cervicothoracic instrumentation.
    Ilgenfritz RM; Gandhi AA; Fredericks DC; Grosland NM; Smucker JD
    Spine (Phila Pa 1976); 2013 Feb; 38(4):E199-204. PubMed ID: 23169075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function-preserving reduction and fixation of unstable Jefferson fractures using a C1 posterior limited construct.
    Hu Y; Xu RM; Albert TJ; Vaccoro AR; Zhao HY; Ma WH; Gu YJ; Yuan ZS
    J Spinal Disord Tech; 2014 Aug; 27(6):E219-25. PubMed ID: 24463337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cervicothoracic junction instrumentation strategies following separation surgery for spinal metastases.
    Chakravarthy VB; Hussain I; Laufer I; Goldberg JL; Reiner AS; Villavieja J; Newman WC; Barzilai O; Bilsky M
    J Neurosurg Spine; 2023 Apr; 38(4):473-480. PubMed ID: 36609370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical challenges in posterior cervicothoracic junction instrumentation.
    Balestrino A; Gondar R; Jannelli G; Zona G; Tessitore E
    Neurosurg Rev; 2021 Dec; 44(6):3447-3458. PubMed ID: 33754193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety and Efficacy of Reconstruction of Complex Cervical Spine Pathology Using Pedicle Screws Inserted with Stealth Navigation and 3D Image-Guided (O-Arm) Technology.
    Theologis AA; Burch S
    Spine (Phila Pa 1976); 2015 Sep; 40(18):1397-406. PubMed ID: 26426710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of the pedicle screws for cervicothoracic fracture-dislocation].
    Zhao LJ; Xu RM; Ma WH; Jiang WY; Xiao BP; Ruan YP; Sun SH; Hu Y; Gu YJ
    Zhongguo Gu Shang; 2009 Aug; 22(8):569-72. PubMed ID: 19753968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posterior compact Cotrel-Dubousset instrumentation for occipitocervical, cervical and cervicothoracic fusion.
    Korovessis P; Katonis P; Aligizakis A; Christoforakis J; Baikousis A; Papazisis Z; Petsinis G
    Eur Spine J; 2001 Oct; 10(5):385-94. PubMed ID: 11718192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posterior stabilization strategies following resection of cervicothoracic junction tumors: review of 90 consecutive cases.
    Placantonakis DG; Laufer I; Wang JC; Beria JS; Boland P; Bilsky M
    J Neurosurg Spine; 2008 Aug; 9(2):111-9. PubMed ID: 18764742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of upper cervical spine instability with posterior fusion plus atlantoaxial pedicle screw.
    Ma C; Wu J; Zhao M; Dai W; Wu D; Wang Z; Feng J; Liu C; Li Y; Zhao Q; Tian J
    Cell Biochem Biophys; 2014 Jul; 69(3):693-7. PubMed ID: 24687596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of upper thoracic pedicle screw placement using three-dimensional image guidance.
    Bledsoe JM; Fenton D; Fogelson JL; Nottmeier EW
    Spine J; 2009 Oct; 9(10):817-21. PubMed ID: 19664966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.