These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25374517)

  • 21. Phospholipases and arachidonic acid contribute independently to sensory transduction and associative neuronal facilitation in Hermissenda type B photoreceptors.
    Talk AC; Muzzio IA; Matzel LD
    Brain Res; 1997 Mar; 751(2):196-205. PubMed ID: 9099806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implicating causal relations between cellular function and learning behavior.
    Lederhendler I; Alkon DL
    Behav Neurosci; 1986 Dec; 100(6):833-8. PubMed ID: 3545259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation.
    Talk AC; Muzzio IA; Matzel LD
    Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Background illumination effects upon in vitro conditioning in Hermissenda.
    Tomsic D; Alkon DL
    Neurobiol Learn Mem; 2000 Jul; 74(1):56-64. PubMed ID: 10873520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane changes in a single photoreceptor cause associative learning in Hermissenda.
    Farley J; Richards WG; Ling LJ; Liman E; Alkon DL
    Science; 1983 Sep; 221(4616):1201-3. PubMed ID: 6612335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemosensory conditioning of Hermissenda crassicornis.
    Farley J; Grover LM; Sun L; Huang SS; Eisthen HL; Girolami C; Wu R
    Behav Neurosci; 1990 Aug; 104(4):583-96. PubMed ID: 2206428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interstimulus interval and classical conditioning in the marine snail Hermissenda crassicornis.
    Lederhendler II; Alkon DL
    Behav Brain Res; 1989 Oct; 35(1):75-80. PubMed ID: 2803546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classical conditioning of Hermissenda: origin of a new response.
    Lederhendler II; Gart S; Alkon DL
    J Neurosci; 1986 May; 6(5):1325-31. PubMed ID: 3711982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Associative behavioral modification in hermissenda: cellular correlates.
    Crow TJ; Alkon DL
    Science; 1980 Jul; 209(4454):412-4. PubMed ID: 17747814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Input and output changes of an identified neural pathway are correlated with associative learning in Hermissenda.
    Goh Y; Lederhendler I; Alkon DL
    J Neurosci; 1985 Feb; 5(2):536-43. PubMed ID: 3973682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.
    Song C; Ehlers VL; Moyer JR
    J Neurosci; 2015 Sep; 35(39):13511-24. PubMed ID: 26424895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acquisition of conditioned associations in Hermissenda: additive effects of contiguity and the forward interstimulus interval.
    Matzel LD; Schreurs BG; Lederhendler I; Alkon DL
    Behav Neurosci; 1990 Aug; 104(4):597-606. PubMed ID: 2206429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein phosphorylation and associative learning in Hermissenda.
    Neary JT; Alkon DL
    Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactive contributions of intracellular calcium and protein phosphatases to massed-trials learning deficits in Hermissenda.
    Muzzio IA; Ramirez RR; Talk AC; Matzel LD
    Behav Neurosci; 1999 Feb; 113(1):103-17. PubMed ID: 10197910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retention of an associative behavioral change in Hermissenda.
    Crow TJ; Alkon DL
    Science; 1978 Sep; 201(4362):1239-41. PubMed ID: 694512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contingency learning and causal detection in Hermissenda: II. Cellular mechanisms.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):28-56. PubMed ID: 2435301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Higher-order associative processing in Hermissenda suggests multiple sites of neuronal modulation.
    Rogers RF; Matzel LD
    Learn Mem; 1996; 2(6):279-98. PubMed ID: 10467580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Associative learning of visual and vestibular stimuli in Lymnaea.
    Sakakibara M; Kawai R; Kobayashi S; Horikoshi T
    Neurobiol Learn Mem; 1998 Jan; 69(1):1-12. PubMed ID: 9521803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse.
    Feltenstein MW; See RE
    Neurobiol Learn Mem; 2007 Nov; 88(4):435-44. PubMed ID: 17613253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of two voltage-dependent K+ currents mediates retention of a learned association.
    Alkon DL; Sakakibara M; Forman R; Harrigan J; Lederhendler I; Farley J
    Behav Neural Biol; 1985 Sep; 44(2):278-300. PubMed ID: 4062781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.