These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25375153)

  • 1. Stability depends on positive autoregulation in Boolean gene regulatory networks.
    Pinho R; Garcia V; Irimia M; Feldman MW
    PLoS Comput Biol; 2014 Nov; 10(11):e1003916. PubMed ID: 25375153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Self-Loops on Boolean Networks Attractor Landscape and Implications for Cell Differentiation Modelling.
    Montagna S; Braccini M; Roli A
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2702-2713. PubMed ID: 31985435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a gene regulatory network of the induced systemic resistance defense response in Arabidopsis using boolean networks.
    Timmermann T; González B; Ruz GA
    BMC Bioinformatics; 2020 Apr; 21(1):142. PubMed ID: 32293239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of cooperative bistability and robustness of gene regulatory networks.
    Nagata S; Kikuchi M
    PLoS Comput Biol; 2020 Jun; 16(6):e1007969. PubMed ID: 32598360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asynchronous stochastic Boolean networks as gene network models.
    Zhu P; Han J
    J Comput Biol; 2014 Oct; 21(10):771-83. PubMed ID: 24937230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of robust regulatory motifs from in silico evolution of sustained oscillation.
    Jin Y; Meng Y
    Biosystems; 2011 Jan; 103(1):38-44. PubMed ID: 20920549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical gene regulatory networks are tuned by transcriptional autoregulation with microRNA feedback.
    Minchington TG; Griffiths-Jones S; Papalopulu N
    Sci Rep; 2020 Jul; 10(1):12960. PubMed ID: 32737375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving robust gene regulatory networks.
    Noman N; Monjo T; Moscato P; Iba H
    PLoS One; 2015; 10(1):e0116258. PubMed ID: 25616055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Criticality of Gene Regulatory Networks Affects the Resulting Morphogenesis under Genetic Perturbations.
    Kim H; Sayama H
    Artif Life; 2018; 24(2):85-105. PubMed ID: 29664344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jimena: efficient computing and system state identification for genetic regulatory networks.
    Karl S; Dandekar T
    BMC Bioinformatics; 2013 Oct; 14():306. PubMed ID: 24118878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling stochasticity and robustness in gene regulatory networks.
    Garg A; Mohanram K; Di Cara A; De Micheli G; Xenarios I
    Bioinformatics; 2009 Jun; 25(12):i101-9. PubMed ID: 19477975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network.
    Ruz GA; Timmermann T; Barrera J; Goles E
    Biol Res; 2014 Nov; 47(1):64. PubMed ID: 25723815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CABeRNET: a Cytoscape app for augmented Boolean models of gene regulatory NETworks.
    Paroni A; Graudenzi A; Caravagna G; Damiani C; Mauri G; Antoniotti M
    BMC Bioinformatics; 2016 Feb; 17():64. PubMed ID: 26846964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SAT-based algorithm for finding attractors in synchronous Boolean networks.
    Dubrova E; Teslenko M
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1393-9. PubMed ID: 21778527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Under-dominance constrains the evolution of negative autoregulation in diploids.
    Stewart AJ; Seymour RM; Pomiankowski A; Reuter M
    PLoS Comput Biol; 2013; 9(3):e1002992. PubMed ID: 23555226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular genetic regulatory networks increase organization during pattern formation.
    Mohamadlou H; Podgorski GJ; Flann NS
    Biosystems; 2016 Aug; 146():77-84. PubMed ID: 27327866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of temporal correlations between genes in models of noisy and noiseless gene networks.
    Ribeiro AS; Lloyd-Price J; Chowdhury S; Yli-Harja O
    Biosystems; 2011; 104(2-3):136-44. PubMed ID: 21356270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling gene regulatory network motifs using Statecharts.
    Fioravanti F; Helmer-Citterich M; Nardelli E
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S20. PubMed ID: 22536967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.