These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25375260)

  • 1. Gelation: the role of sugars and polyols on gelatin and agarose.
    Shimizu S; Matubayasi N
    J Phys Chem B; 2014 Nov; 118(46):13210-6. PubMed ID: 25375260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential hydration and the exclusion of cosolvents from protein surfaces.
    Shimizu S; Smith DJ
    J Chem Phys; 2004 Jul; 121(2):1148-54. PubMed ID: 15260652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sugars and polyols on water in agarose gels.
    Nishinari K; Watase M; Williams PA; Phillips GO
    Adv Exp Med Biol; 1991; 302():235-49. PubMed ID: 1746332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the nature of the maximum gelation temperature in polymer gels.
    Marangoni AG; Tosh SM
    Biophys Chem; 2005 Mar; 113(3):265-7. PubMed ID: 15620511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels.
    Sanwlani S; Kumar P; Bohidar HB
    J Phys Chem B; 2011 Jun; 115(22):7332-40. PubMed ID: 21563783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt-induced LCST-type thermal gelation of methylcellulose: quantifying non-specific interactions via fluctuation theory.
    Isobe N; Shimizu S
    Phys Chem Chem Phys; 2020 Jul; 22(28):15999-16006. PubMed ID: 32632420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.
    Miyawaki O; Omote C; Matsuhira K
    Biopolymers; 2015 Dec; 103(12):685-91. PubMed ID: 26215282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the phase behaviour of gelatin/agarose mixture in an environment of reduced solvent quality.
    Almrhag O; George P; Bannikova A; Katopo L; Chaudhary D; Kasapis S
    Food Chem; 2013 Jan; 136(2):835-42. PubMed ID: 23122134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the thermodynamic stability of proteins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water.
    Kumar V; Chari R; Sharma VK; Kalonia DS
    Int J Pharm; 2011 Jul; 413(1-2):19-28. PubMed ID: 21515346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen exchange and hydration dynamics in gelatin gels.
    Vaca Chavez F; Hellstrand E; Halle B
    J Phys Chem B; 2006 Nov; 110(43):21551-9. PubMed ID: 17064106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Kirkwood-Buff theory and the effect of cosolvents on biochemical reactions.
    Shimizu S; Boon CL
    J Chem Phys; 2004 Nov; 121(18):9147-55. PubMed ID: 15527383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hydration of polyhydroxy compounds in biological systems.
    Uedaira H; Uedaira H
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):823-9. PubMed ID: 11728096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caffeine dimerization: effects of sugar, salts, and water structure.
    Shimizu S
    Food Funct; 2015 Oct; 6(10):3228-35. PubMed ID: 26222923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sodium sulfate on the gelling behavior of agarose and water structure inside gel networks.
    Singh T; Meena R; Kumar A
    J Phys Chem B; 2009 Feb; 113(8):2519-25. PubMed ID: 19193039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topology evolution and gelation mechanism of agarose gel.
    Xiong JY; Narayanan J; Liu XY; Chong TK; Chen SB; Chung TS
    J Phys Chem B; 2005 Mar; 109(12):5638-43. PubMed ID: 16851608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of excess solvation numbers of water and cosolvents from preferential interaction and volumetric experiments.
    Shimizu S
    J Chem Phys; 2004 Mar; 120(10):4989-90. PubMed ID: 15267361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of microscopic phase separation in gelation of aqueous gelatin solutions.
    Pelc D; Marion S; Požek M; Basletić M
    Soft Matter; 2014 Jan; 10(2):348-56. PubMed ID: 24651841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of thermal history on the structural and mechanical properties of agarose gels.
    Aymard P; Martin DR; Plucknett K; Foster TJ; Clark AH; Norton IT
    Biopolymers; 2001 Sep; 59(3):131-44. PubMed ID: 11391563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of water potential on sol-gel transition and intermolecular interaction of gelatin near the transition temperature.
    Miyawaki O; Norimatsu Y; Kumagai H; Irimoto Y; Kumagai H; Sakurai H
    Biopolymers; 2003 Dec; 70(4):482-91. PubMed ID: 14648759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible gelation of rod-like viruses grafted with thermoresponsive polymers.
    Zhang Z; Krishna N; Lettinga MP; Vermant J; Grelet E
    Langmuir; 2009 Feb; 25(4):2437-42. PubMed ID: 19166277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.