These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25375430)

  • 1. Enhanced collisionless shock formation in a magnetized plasma containing a density gradient.
    Clark SE; Everson ET; Schaeffer DB; Bondarenko AS; Constantin CG; Niemann C; Winske D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):041101. PubMed ID: 25375430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas.
    Schaeffer DB; Fox W; Follett RK; Fiksel G; Li CK; Matteucci J; Bhattacharjee A; Germaschewski K
    Phys Rev Lett; 2019 Jun; 122(24):245001. PubMed ID: 31322368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.
    Schaeffer DB; Fox W; Haberberger D; Fiksel G; Bhattacharjee A; Barnak DH; Hu SX; Germaschewski K
    Phys Rev Lett; 2017 Jul; 119(2):025001. PubMed ID: 28753335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-power laser experiment forming a supercritical collisionless shock in a magnetized uniform plasma at rest.
    Yamazaki R; Matsukiyo S; Morita T; Tanaka SJ; Umeda T; Aihara K; Edamoto M; Egashira S; Hatsuyama R; Higuchi T; Hihara T; Horie Y; Hoshino M; Ishii A; Ishizaka N; Itadani Y; Izumi T; Kambayashi S; Kakuchi S; Katsuki N; Kawamura R; Kawamura Y; Kisaka S; Kojima T; Konuma A; Kumar R; Minami T; Miyata I; Moritaka T; Murakami Y; Nagashima K; Nakagawa Y; Nishimoto T; Nishioka Y; Ohira Y; Ohnishi N; Ota M; Ozaki N; Sano T; Sakai K; Sei S; Shiota J; Shoji Y; Sugiyama K; Suzuki D; Takagi M; Toda H; Tomita S; Tomiya S; Yoneda H; Takezaki T; Tomita K; Kuramitsu Y; Sakawa Y
    Phys Rev E; 2022 Feb; 105(2-2):025203. PubMed ID: 35291161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merging of super-Alfvénic current filaments during collisionless Weibel instability of relativistic electron beams.
    Polomarov O; Kaganovich I; Shvets G
    Phys Rev Lett; 2008 Oct; 101(17):175001. PubMed ID: 18999755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion acceleration from the shock front induced by hole boring in ultraintense laser-plasma interactions.
    Habara H; Lancaster KL; Karsch S; Murphy CD; Norreys PA; Evans RG; Borghesi M; Romagnani L; Zepf M; Norimatsu T; Toyama Y; Kodama R; King JA; Snavely R; Akli K; Zhang B; Freeman R; Hatchett S; MacKinnon AJ; Patel P; Key MH; Stoeckl C; Stephens RB; Fonseca RA; Silva LO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046414. PubMed ID: 15600537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-generated magnetic dipoles in weakly magnetized beam-plasma system.
    Jia Q; Mima K; Cai HB; Taguchi T; Nagatomo H; He XT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023107. PubMed ID: 25768618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-power laser experiment on developing supercritical shock propagating in homogeneously magnetized plasma of ambient gas origin.
    Matsukiyo S; Yamazaki R; Morita T; Tomita K; Kuramitsu Y; Sano T; Tanaka SJ; Takezaki T; Isayama S; Higuchi T; Murakami H; Horie Y; Katsuki N; Hatsuyama R; Edamoto M; Nishioka H; Takagi M; Kojima T; Tomita S; Ishizaka N; Kakuchi S; Sei S; Sugiyama K; Aihara K; Kambayashi S; Ota M; Egashira S; Izumi T; Minami T; Nakagawa Y; Sakai K; Iwamoto M; Ozaki N; Sakawa Y
    Phys Rev E; 2022 Aug; 106(2-2):025205. PubMed ID: 36109929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory Observations of Ultra-Low Frequency Analogue Waves Driven by the Right-Hand Resonant Ion Beam Instability.
    Heuer PV; Weidl MS; Dorst RS; Schaeffer DB; Tripathi SKP; Vincena S; Constantin CG; Niemann C; Wilson LB; Winske D
    Astrophys J Lett; 2020 Mar; 891(1):. PubMed ID: 32257093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic structure of a magnetized laser-produced plasma.
    Bonde J; Vincena S; Gekelman W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):051102. PubMed ID: 26651639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle energization in an expanding magnetized relativistic plasma.
    Liang E; Nishimura K; Li H; Gary SP
    Phys Rev Lett; 2003 Feb; 90(8):085001. PubMed ID: 12633432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium plasma emitter for collisionless magnetized plasma experiment.
    Kawamori E; Lee JY; Huang YJ; Syugu WJ; Song SX; Hsieh TY; Cheng CZ
    Rev Sci Instrum; 2011 Sep; 82(9):093502. PubMed ID: 21974582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-scale structure of the electron dissipation region during collisionless magnetic reconnection.
    Shay MA; Drake JF; Swisdak M
    Phys Rev Lett; 2007 Oct; 99(15):155002. PubMed ID: 17995175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of electrostatic two-stream instabilities associated with a laser-driven collisionless shock in a multicomponent plasma.
    Sakawa Y; Ohira Y; Kumar R; Morace A; Döhl LNK; Woolsey N
    Phys Rev E; 2021 Nov; 104(5-2):055202. PubMed ID: 34942769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the boundary layer created by the explosion of a dense object in an ambient dilute gas triggered by a high power laser.
    Matsui R; Fukuda Y; Kishimoto Y
    Phys Rev E; 2019 Jul; 100(1-1):013203. PubMed ID: 31499930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic Fields.
    Li CK; Tikhonchuk VT; Moreno Q; Sio H; D'Humières E; Ribeyre X; Korneev P; Atzeni S; Betti R; Birkel A; Campbell EM; Follett RK; Frenje JA; Hu SX; Koenig M; Sakawa Y; Sangster TC; Seguin FH; Takabe H; Zhang S; Petrasso RD
    Phys Rev Lett; 2019 Aug; 123(5):055002. PubMed ID: 31491329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion acceleration at two collisionless shocks in a multicomponent plasma.
    Kumar R; Sakawa Y; Sano T; Döhl LNK; Woolsey N; Morace A
    Phys Rev E; 2021 Apr; 103(4-1):043201. PubMed ID: 34005941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersive nature of high mach number collisionless plasma shocks: Poynting flux of oblique whistler waves.
    Sundkvist D; Krasnoselskikh V; Bale SD; Schwartz SJ; Soucek J; Mozer F
    Phys Rev Lett; 2012 Jan; 108(2):025002. PubMed ID: 22324692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supermagnetosonic jets behind a collisionless quasiparallel shock.
    Hietala H; Laitinen TV; Andréeová K; Vainio R; Vaivads A; Palmroth M; Pulkkinen TI; Koskinen HE; Lucek EA; Rème H
    Phys Rev Lett; 2009 Dec; 103(24):245001. PubMed ID: 20366203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collisional magnetized shock waves: One-dimensional full particle-in-cell simulations.
    Nakanotani M; Camata RP; Arslanbekov RR; Zank GP
    Phys Rev E; 2022 Apr; 105(4-2):045209. PubMed ID: 35590652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.