These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 25375432)

  • 21. Universality and criticality of a second-order granular solid-liquid-like phase transition.
    Castillo G; Mujica N; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012141. PubMed ID: 25679604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First- and second-order quantum phase transitions of a q-state Potts model in fractal lattices.
    Yi H
    Phys Rev E; 2017 Dec; 96(6-1):062105. PubMed ID: 29347356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical behavior of the spin-1 Blume-Capel model on two-dimensional Voronoi-Delaunay random lattices.
    Fernandes FP; de Albuquerque DF; Lima FW; Plascak JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022144. PubMed ID: 26382380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative method to characterize continuous and discontinuous phase transitions in surface reaction models.
    Fernandes HA; da Silva R; Santos ED; Gomes PF; Arashiro E
    Phys Rev E; 2016 Aug; 94(2-1):022129. PubMed ID: 27627268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo static and dynamic simulations of a three-dimensional Ising critical model.
    Livet F
    Phys Rev E; 2020 Feb; 101(2-1):022131. PubMed ID: 32168585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roughness exponent in two-dimensional percolation, Potts model, and clock model.
    Redinz JA; Martins ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066133. PubMed ID: 11415199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum critical dynamics simulation of dirty boson systems.
    Meier H; Wallin M
    Phys Rev Lett; 2012 Feb; 108(5):055701. PubMed ID: 22400943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical behavior of the mixed-spin Ising model with two competing dynamics.
    Godoy M; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026111. PubMed ID: 11863591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic critical behavior of the XY model in small-world networks.
    Medvedyeva K; Holme P; Minnhagen P; Kim BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036118. PubMed ID: 12689143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical behavior of an Ising system on the Sierpinski carpet: a short-time dynamics study.
    Bab MA; Fabricius G; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036139. PubMed ID: 15903525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disorder-induced rounding of the phase transition in the large-q-state Potts model.
    Mercaldo MT; Anglès D'Auriac JC; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056112. PubMed ID: 15244888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical behavior of frustrated Josephson junction arrays with bond disorder.
    Yun YJ; Baek IC; Choi MY
    Phys Rev Lett; 2002 Jul; 89(3):037004. PubMed ID: 12144413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase diagram for a two-dimensional, two-temperature, diffusive XY model.
    Reichl MD; Del Genio CI; Bassler KE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):040102. PubMed ID: 21230222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase diagram of a disordered boson Hubbard model in two dimensions.
    Lee JW; Cha MC; Kim D
    Phys Rev Lett; 2001 Dec; 87(24):247006. PubMed ID: 11736535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics.
    Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations.
    Szukowski G; Kamieniarz G; Musiał G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical behavior and Griffiths effects in the disordered contact process.
    Vojta T; Dickison M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036126. PubMed ID: 16241534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamical scaling analysis of phase transition and critical properties for the RP^{2} model in two dimensions.
    Ozeki Y; Matsuda A; Echinaka Y
    Phys Rev E; 2019 Jan; 99(1-1):012116. PubMed ID: 30780352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.