These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 25375439)
1. Simulating non-Markovian stochastic processes. Boguñá M; Lafuerza LF; Toral R; Serrano MÁ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042108. PubMed ID: 25375439 [TBL] [Abstract][Full Text] [Related]
2. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks. Vestergaard CL; Génois M PLoS Comput Biol; 2015 Oct; 11(10):e1004579. PubMed ID: 26517860 [TBL] [Abstract][Full Text] [Related]
3. A Multi-stage Representation of Cell Proliferation as a Markov Process. Yates CA; Ford MJ; Mort RL Bull Math Biol; 2017 Dec; 79(12):2905-2928. PubMed ID: 29030804 [TBL] [Abstract][Full Text] [Related]
4. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. E W; Liu D; Vanden-Eijnden E J Chem Phys; 2005 Nov; 123(19):194107. PubMed ID: 16321076 [TBL] [Abstract][Full Text] [Related]
5. Quantum dynamics with non-Markovian fluctuating parameters. Goychuk I Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016109. PubMed ID: 15324131 [TBL] [Abstract][Full Text] [Related]
6. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network. Griffith M; Courtney T; Peccoud J; Sanders WH Bioinformatics; 2006 Nov; 22(22):2782-9. PubMed ID: 16954141 [TBL] [Abstract][Full Text] [Related]
8. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. Salis H; Kaznessis Y J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306 [TBL] [Abstract][Full Text] [Related]
9. Exact stochastic simulation of coupled chemical reactions with delays. Cai X J Chem Phys; 2007 Mar; 126(12):124108. PubMed ID: 17411109 [TBL] [Abstract][Full Text] [Related]
10. A partial-propensity formulation of the stochastic simulation algorithm for chemical reaction networks with delays. Ramaswamy R; Sbalzarini IF J Chem Phys; 2011 Jan; 134(1):014106. PubMed ID: 21218996 [TBL] [Abstract][Full Text] [Related]
11. Shannon entropic temperature and its lower and upper bounds for non-Markovian stochastic dynamics. Ray S; Bag BC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032103. PubMed ID: 25314391 [TBL] [Abstract][Full Text] [Related]
12. Dynamic simulations of single-molecule enzyme networks. Armbruster D; Nagy JD; van de Rijt EA; Rooda JE J Phys Chem B; 2009 Apr; 113(16):5537-44. PubMed ID: 19326885 [TBL] [Abstract][Full Text] [Related]
13. Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks. Feng M; Cai SM; Tang M; Lai YC Nat Commun; 2019 Aug; 10(1):3748. PubMed ID: 31444336 [TBL] [Abstract][Full Text] [Related]
14. A generalized linear threshold model for an improved description of the spreading dynamics. Ran Y; Deng X; Wang X; Jia T Chaos; 2020 Aug; 30(8):083127. PubMed ID: 32872812 [TBL] [Abstract][Full Text] [Related]
15. Simulating the cellular passive transport of glucose using a time-dependent extension of Gillespie algorithm for stochastic pi-calculus. Lecca P Int J Data Min Bioinform; 2007; 1(4):315-36. PubMed ID: 18402045 [TBL] [Abstract][Full Text] [Related]
17. Human mobility and time spent at destination: impact on spatial epidemic spreading. Poletto C; Tizzoni M; Colizza V J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488 [TBL] [Abstract][Full Text] [Related]